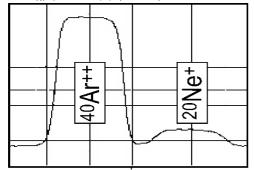
High resolution, multicollector noble gas mass spectrometry: HELIX-MC


 $\frac{P.G. Burnard}{Marty^{1}}^{1}, R. BASSET^{1}, M. PUJOL^{1} AND B.$

¹CRPG-CNRS, BP20, 54501 Vandoeuvre-les-Nancy, France

The problem of Ne isotopes

Accurate determination of the isotopic composition of Ne is problematic due to isobaric interferences at m/z = 20 and 22 from ${}^{40}Ar^{++}$ and CO_2^{++} respectively. Generally, corrections are made on the basis of measuring ${}^{40}Ar^+$ and CO_2^{++} during the analysis and correcting the m/z= 20 and 22 signals using previously-determined ${}^{40}Ar^{++/40}Ar^+$ and CO_2^{++}/CO_2^{++} ratios. However, given that there is pressure-dependent isotopic discrimination in Neir type ion sources (of the order several %) and that the ratios ${}^{40}Ar^{++/40}Ar^+$ and CO_2^{++}/CO_2^{++} are also dependent on the spectrometer pressure at the time of measurement, it is impossible to completely deconvolve the m/z = 20 and 22 signals (three variables, two isotope ratios).

GV Instruments have specifically targeted this problem by developing a multicollector noble gas mass spectrometer ⁺, the Helix MC, with sufficient resolution ($\approx 1500 \text{ M}/\Delta\text{M}$) to separate ⁴⁰Ar⁺⁺ from ²⁰Ne. For the first time, it is possible to measure ²⁰Ne⁺ without ⁴⁰Ar⁺⁺ (as shown in the figure), and thereby Ne isotopic discrimination can be measured directly. Similar advantages exist for measuring N isotopes free from CO isobaric interferences. A 5 collector Helix-MC was delivered to CRPG, Nancy at the end of 2005, and we describe here the characteristics of the machine.

Φιγυρε: Σχαν αχροσσ $\mu/\zeta = 20$ ατ ρεσολυτιον $M/\Delta M = 1500$, showing that even large contributions of 40 Ar++ can be completely resolved from the 20 Ne+ signal.