A search for cosmogenic nitrogen in a terrestrial rock

B. MARTY¹, R. YOKOCHI², J. M. SCHAEFER³ & R. WIELER⁴

¹ CRPG-CNRS, ,BP 20, 54501 Vandoeuvre Cedex, France, bmarty@crpg.cnrs-nancy.fr

² Dept. Earth & Environmental Sciences, Univ. Illinois at Chicago, Chicago, USA

³Lamont-Doherty Earth Observatory, Palisades, USA

⁴ Institute of Isotope Geology and Mineral Resources, ETH Zürich, Switzerland

¹⁵N produced by cosmic rays has been identified in lunar rocks and meteorites. Production occurs through reaction on ¹⁶O directly via ¹⁶O(p,2p)¹⁵N and indirectly via ¹⁶O(p,pn)¹⁵O (e.g., [1]). Due to ubiquitous occurrence of oxygen in terrestrial rocks and the fact that ^{15}N is stable, the use of cosmogenic ^{15}N appears attracting for evaluating surface exposure durations on the long range. However, nitrogen is very abundant at the Earth's surface, mostly as atmospheric N₂, as organic N, or as ammonium substituting to K in crustal rocks, so that its detection requires techniques able to identify precisely ¹⁵N_c from contamination or structural nitrogen. We have analysed nitrogen and noble gases in a pyroxene separate from a dolerite boulder sampled at an elevation of 2550 m at Mt Feather in the Dry Valleys, Antarctica [2]. Ne and He minimal exposure ages are 5.3-5.6 Ma, respectively [2]. Gases were extracted by stepwise heating using both a CO₂ laser and a combination of an externally heated quartz tube and an induction furnace. Nitrogen, neon and argon amounts and isotopic ratios were analysed together by static mass spectrometry in CRPG, Nancy, France. ²¹Ne_c/³⁸Ar_c in the range 2.3-3.1 are comparable to values observed in lunar samples (e.g., [1,3]). The highest ${}^{15}N/{}^{14}N$ ratios were observed during the highest temperature extractions, consistent with the release pattern of ${}^{15}N_c$ from extraterrestrial material. Assuming that these high ${}^{15}N/{}^{14}N$ ratios are due to release of cosmogenic ¹⁵N_c, computed $^{15}N_c/^{21}Ne_c$ and $^{15}N_c/^{38}Ar_c$ ratios of 13 (range : 2-23) and 48 (range : 7-88) encompass lunar soil values (4 and 14, respectively). The corresponding ¹⁵N_c production rate at sea level, scaled to a ³He production rate of 115 atom/g.yr at sea level for the sampling latitude [2], is ~ 200 (possible range : 73-460) atoms/g.yr. Further work is under way to refine this value.

References

- [1] Mathew K. and Marti K. (2001) EPSL 184, 659-669
- [2] Schaeffer J.M., et al. (1999) EPSL 167, 215-226

[3] Hashizume K, Marty B., and Wieler R. (2002) *EPSL* **202**, 201-216