Ab Initio and Experimental Studies of Equilibrium Isotopic Fractionation in Aqueous Ferric Chloride Complexes

<u>P.S. HILL¹</u>, E.A. SCHAUBLE¹, A. SHAHAR¹, E. TONUI¹, E.D. YOUNG¹

¹Department of Earth and Space Sciences, University of California, Los Angeles; phill@ess.ucla.edu

Both iron and chlorine are ubiquitous in natural systems, but not much is known about isotopic fractionation among ferric chloride complexes. To determine the extent of this fractionation, we did integrated theoretical and experimental studies of fractionation among the aqueous ferric chloride complexes: $Fe(H_2O)_6^{3+}$, $FeCl(H_2O)_5^{2+}$, $FeCl_2(H_2O)_4^+$, $FeCl_3$ ($H_2O)_3$, $FeCl_3(H_2O)_2$, $FeCl_4^-$, $FeCl_5H_2O^{2-}$, $FeCl_5^{2-}$, $FeCl_6^{3-}$.

We developed four sets of *ab initio* models (UHF and modified DFT with different basis sets) for each complex. All sets of models showed a linear decrease in the isotopic fractionation factor as the number of Cl⁻ ions per Fe⁺³ ion increased, with slopes -0.8% to -1.0% per Cl⁻, depending on model. At 20°C, 1000 ln β_{56-54} (relative to a dissociated Fe atom) values ranged from 8.93 to 9.73% for Fe(H₂O)₆³⁺, 8.04 to 9.12% for FeCl(H₂O)₅²⁺, 7.61 to 8.73% for FeCl₂(H₂O)₄⁺, 7.14 to 8.25% for FeCl₄⁻, and 3.09 to 4.41% for FeCl₆³⁻.

To test these models, we mixed two series of low pH solutions of ferric chloride (total Fe = 0.08M and 0.17M) with total chlorine = 0 to 5M. Each solution equilibrated in the presence of immiscible diethyl ether. Only FeCl₄⁻ dissolves in the ether phase. $\Delta Fe_{56-54} = \delta^{56}Fe$ (total Fe remaining in aqueous phase) - $\delta^{56}Fe$ (FeCl₄⁻ in ether phase) was determined for each solution via MC-ICPMS analysis.

Relative amounts of each complex for each experiment were calculated from a speciation model and then used with the *ab initio* values to calculate the theoretical ΔFe_{56-54} for each experiment. ($\delta^{56}Fe_{aqueous}$ equals the sum of $\delta^{56}Fe$ of each complex times its fractional portion of the whole.) According to the speciation model, Fe⁺³ dominates for [Cl⁻]<0.75M; FeCl⁺² for [Cl⁻]<1.9M; and FeCl₂⁺ for 1.9M<[Cl⁻]<5M.

Theoretical values of ΔFe_{56-54} for each *ab initio* model sets were compared to the experimenal ΔFe_{56-54} values. Both the experimental data and the theoretical models show the same downward trend: ΔFe_{56-54} is highest for low chlorinity where $Fe(H_2O)_6^{+3}$ is the dominant species and lowest at high chlorinity where $FeCl_2(H_2O)_4^{+1}$ is dominant. The theoretical models predict ~0.5‰ to 0.7‰ decrease in ΔFe_{56-54} (depending on the model) for the range of chlorinity studied (0.5M to 5M). The experimental ΔFe_{56-54} ranged from ~1‰ at [Cl⁻]=0.5M to 0.3‰ at [Cl⁻] = 5M.

The experimental results are in good agreement with the theoretical predictions, suggesting the existence of equilibrium isotopic fractionation among aqueous ferric chloride complexes and a decrease in 56 Fe/ 54 Fe as the number of Cl⁻ ions per Fe ${}^{3+}$ ion increases.