The oxygen isotopic composition of Precambrian cherts

E.C. PERRY¹ and L. LEFTICARIU²

 Department of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, Il, USA (perry@geol.niu.edu)
Department of Geological Sciences, Indiana University, Bloomington, IN, USA (lleftica@indiana.edu)

The oxygen isotopic composition of Precambrian cherts contains an interesting but incomplete record of Precambrian environments. $\Delta_{chert-water} = f(T) \approx (\delta^{18}O_{chert} - \delta^{18}O_{water})$. Therefore, $\delta^{18}O_{chert} \approx (\Delta_{chert-water} + \delta^{18}O_{water})$, and $\delta^{18}O_{chert}$ is a function both of temperature of precipitation and of $\delta^{18}O$ of the precipitating water. *Neither variable is independently constrained*. The most ¹⁸O-enriched Paleoproterozoic cherts, from the Gunflint, Hamersley, and Kuruman Formations, which are primary precipitates from seas nearly saturated with silica, are depleted by 10% or more compared to modern chert; Archean chert is even more depleted.

Post-depositional alteration cannot explain these consistently low ¹⁸O values [1], [2]. Therefore i) the early Precambrian $\delta^{18}O_{seawater}$ was lower than the modern value, ii) early Precambrian surface temperature was higher (up to 60°C), or iii) both. Because neither explanation i) or ii) is completely viable, we explore other factors that may have been active in the Precambrian. Valley *et al.* (2005), indicate that crust-mantle interaction changed significantly about 2500 Myr ago. Therefore, Archean tectonic control of $\delta^{18}O_{seawater}$ may have differed from modern control. *Perhaps the Archean ocean was not a hydrothermal system*.

Silica-secreting organisms were absent in the Paleoproterozoic and seawater silica concentration was probably ≥ 60 ppm (cf. modern value = 1-15 ppm). Terrestrial weathering of silicates was the probable primary source of the silica deposited in Paleoproterozoic iron formation. Silicate *weathering* would have taken place in fresh water with a δ^{18} O distinctly lower than the δ^{18} O of contemporary seawater. By analogy with phosphate and sulfate complexes, inorganic exchange of oxygen isotopes in silica complexes and gels may be extremely slow.

Hypothesis: In a silica-saturated Paleoproterozoic ocean, chert was precipitated out of isotopic equilibrium with seawater; thus, despite their marine origin, silica complexes or gels and the resultant chert retained their freshwater isotopic signature – a partial analog may be δ^{18} O of CaSO₄•2H₂O in evaporite deposits.

References

- [1] Perry E. C. and Lefticariu L. (2003) *In:* Treatise on Geochemistry, vol. 7, pp. 99–113.
- [2] Knauth L. P. (2005) Palaeogeograph. Palaeoclim. Palaeoecol. 219, 53–69.
- [3] Valley J. W., et al. (2005) Contrib Mineral Petrol 150, 561–580.