Multiple events in oceanic upper mantle: Ru-Os-Ir alloys in Tibetan ophiolites

R.D. SHI¹, X.C. ZHI¹, S.Y. O'REILLY², W.L. GRIFFIN², N.J. PEARSON², W.J. BAI³, Q.S. FANG³, O. ALARD² AND M. ZHANG²

- ¹CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China. shird@ustc.edu.cn/xczhi@ustc.edu.cn
- ²GEMOC ARC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia
- ³Institute of Geology, CAGS, 26 Baiwanzhuang Road, Beijing, 100037, China

Ru-Os-Ir alloys from podiform chromitites in the Luobusa and Dongqiao ophiolites (see figure) were analysed for PGEs and ¹⁸⁷Os/¹⁸⁸Os (in situ). Most grains are osmiridium or iridosmine (<5% Ru; IMA nomenclature). ¹⁸⁷Re/¹⁸⁸Os is <<0.001; individual grains are isotopically homogeneous (187 Os/ 188 Os within 0.1%). In the Luobusa ophiolite, 187 Os/ 188 Os ratios range from $0.12620\pm4(1\sigma)$ to $0.12672\pm6(1\sigma)$; the average for all grains (n=145) is 0.12645 \pm 2(1 σ). Re-depleted model ages (T_{RD}) (Enstatite Chondritic Reservoir) range from 197-270 Ma, consistent with the opening of the Neo-Tethyan Ocean. In contrast, ¹⁸⁷Os/¹⁸⁸Os in alloys from the Dongqiao ophiolitic chromitite form two groups, mirroring whole-rock Os data for the chromitites. Group I has ¹⁸⁷Os/¹⁸⁸Os 0.12616±5-0.12664±3 (10) and T_{RD} from 208 to 276 Ma. Group II $^{187}\mathrm{Os}/^{188}\mathrm{Os}$ ranges from $0.12003\pm5(1\sigma)$ to $0.12194\pm3(1\sigma)$ and the T_{RD} ranges from 871 to 1139 Ma. We suggest: 1) the ophiolitic podiform chromitites originated as mantle-melting residues in the Permian to early Triassic time; 2) the Yarlung-Zangbo and Bangong-Nujiang Neo-Tethyan Oceans opened nearly simultaneously; 3) the ¹⁸⁷Os/¹⁸⁸Os of the Mesozoic upper mantle ranges from $0.12639 \pm 4(1\sigma)$ to $0.12645 \pm 2(1\sigma)$; 4) the Dongqiao ophiolite contains older material, perhaps relict Rodianian subcontinental lithospheric mantle.

Acknowledgements: This work was supported by the National Natural Science Foundation of China (Grant Nos. 40473008, 40572036, and 40610104005).

