Late Cretaceous adakitic pluton from Rutong, northwestern Tibet

Tai-Ping Zhao¹ and Mei-Fu Zhou²

- 1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, P.R.China
- 2. Department of Hong Kong, The University of Hong Kong, Hong Kong, P.R.China

Mesozoic and Cenozoic igneous rocks are widely distributed in the Lhasa terrane and comprise the Gangdese batholith [1-3]. The Rutog granitic intrusion is located in the westernmost part of the Lhasa terrane, between the Yarlung-Zangbo suture zone to the south and the Bangong-Nujiang suture zone to the north. The Rutog intrusion is composed of a granodiorite, monzogranite and potassic feldspar-granite. This study focuses on SHRIMP zircon dating, and whole rock major and trace elemental and Sr-Nd isotope geochemistry.

New SHRIMP U-Pb zircon dating results yield 80.0 ± 1.2 Ma for the granodiorite and 79.4 ± 0.9 Ma for the monzogranite. All the rocks of the Rutog intrusion have adakite-like geochemical features and have SiO₂ ranging from 62 to 72 wt.% and Al₂O₃ from 15 to 17 wt.%. They have relatively high K₂O (2.33 ~ 4.93 wt.%) and low Na₂O wt.% (3.42 ~ 5.52 wt.%) with Na₂O/K₂O ratios of $0.74 \sim 2.00$. Their REE patterns are enriched in LREE [(La/Yb)n = 15 to 26] without obvious Eu anomalies (δ Eu=0.68 ~ 1.15). The primitive mantle normalized trace elemental patterns are rich in LILE and depleted in HREE, HFSE and Y. The Sr/Y ratios range from 15.2 to 77.6 (average 29.7). The rocks have a narrow range of initial 87 Sr/ 86 Sr ratios (0.7045 to 0.7049) and $\varepsilon_{Nd}(t)$ values (+0.1 ~ +2.3).

The Rutog adakitic rocks were formed from melts produced by partial melting of the lower part of a thickened continental crust at garnet stable depth. The melting event was caused by a newly underplated basaltic magmas above a mantle wedge, suggesting flat subduction of the Neo-Tethyan oceanic lithosphereic and impling an accretionary orogeny in Late Cretaceous. Thus a narrow mountain range already existed in southern Tibet prior to the India-Asia collision (4). The occurrence of Rutog adakitic rocks shows that the crustal thickness of Rutog area have been thickened to >40 km before 80 Ma, which is significant for interpreting the uplifted mechanism of the Tibetan plateau.

References

[1] An Y, Harrison T.M. (2000) Annual Reviews of Earth and Planetary Science 28, 211–280
[2] Xiao, X. C., Li, T. D. and Li, G. C., et al., (1998) Beijing: Geological Publishing House (in Chinese)
[3] Pan, G. T., Wang, L. Q. and Li, X. Z., et al., (2001) Sedimentary Geology and Tethyan Geology, 21(3): 1-26 (in Chinese)
[4] Kapp, P., Murphy, M.A., Yin, A., Harrison, T.M.,

Ding, L., and Guo, J., (2003) Tectonics, 22, 1029.