(U-Th)/He thermochronology of the Tanzawa Tonalite complex, Japan.

K. YAMADA ${ }^{1}$ AND T. TAGAMI ${ }^{1}$
${ }^{1}$ Dept. of Geol. Mineral., Kyoto Univ., Rigaku \#1, 606-8502, Japan; kunimi@terra.kueps.kyoto-u.ac.jp

Introduction

The Tanzawa Mountains on the South Fossa Magna region (SFM), middle the Japan Arc is uplifted through the multiple collisions of the Izu-Bonin Arc against the Japan Arc for last several million years [1]. The Tanzawa Tonalite complex is exposed on an area of $\sim 25 \mathrm{~km}$ east-west and $\sim 5 \mathrm{~km}$ north-south in the center of the Tanzawa Mountains and regarded that the middle crust of the Izu-Bonin Arc [2]. The cross-section of P -wave velocity distribution across the arc supports this hypothesis [3]. Therefore, it is an important and unsolved problem that how this roughly $\sim 10 \mathrm{~km}$ underground pluton uplifted and exhumed as the present landscape, to describe tectonic history of SFA with arc-arc collision.

However, previous thermochronological studies for the complex were even chaotic because the radiometric ages distributed widely [e.g., 4, 5]. Therefore we performed new thermochronometry, apatite and zircon (U-Th)/He method with zircon fission-track analysis to investigate uplift history of the Tanzawa Mountains shallower than $\sim 5 \mathrm{~km}$.

Result and interpretation

(U-Th)/He dating was performed in K.A. Farley
laboratory, CALTECH. Fission-track method was performed in Kyoto Univ. The ages were similar in each method. Therefore the typical cooling rates are calculated at $\sim 20-40$ ${ }^{\circ} \mathrm{C} / \mathrm{Ma}, 6-3.3 \mathrm{Ma} ; \sim 80^{\circ} \mathrm{C} / \mathrm{Ma}, 3.3-2 \mathrm{Ma} ; \sim 30^{\circ} \mathrm{C} / \mathrm{Ma}, 2-0 \mathrm{Ma}$. As a result, the cooling rate was nearly fixed after $\sim 6 \mathrm{Ma}$ in spite of the collisions of the Tanzawa block and the Izu block.

References

[1] Amano, K. (1986) Earth Monthly 8, 581-585 (in Japanese).
[2] Ishizaka, K. \& Yanagi, T. (1977) EPSL 33, 345-352.
[3] Suyehiro, K. et al. (1996) Science 272, 390-392.
[4] Ito, H. et al. (1989) Tectonophysics 166, 331-344.
[5] Saito, K. et al. (1991) J. Geomag. Geoelectr. 43, 921-935.

