Neo-pentane in gas-gas correlation

CHRIS BOREHAM, JANET HOPE AND DIANNE EDWARDS

Petroleum and Marine Division, Geoscience Australia, GPO Box 378, Canberra, ACT, 2601, Australia (chris.boreham@ga.gov.au), (janet.hope@ga.gov.au), (ianne.edwards@ga.gov.au)

Gas–gas correlations are routinely based on the isotopic (carbon and hydrogen) composition of individual gaseous hydrocarbons from methane to n-pentane (C₁-C₅). However, biodegradation can so alter the isotopic composition of the gaseous hydrocarbons that source and maturity information is no longer discernable. Here we report the carbon isotopic composition of 2,2-dimethylpropane (neo-pentane or neo-C₅) in Australian natural gases derived from source rocks of Late Proterozoic to Early Tertiary age. The δ^{13} C neo-C₅ shows a strong source control and, by comparison, the carbon isotopic effects of maturity are very small. Furthermore, neo-C₅ is very resistant to biodegradation.

Non-biodegraded Australian natural gases show $neo-C_5/\Sigma C_5$ ratios up to 0.05. In severely biodegraded natural gases, neo-C₅ can become the most abundant C₅ isomer with $neo-C_5/\Sigma C_5$ ratios up to 0.9. The $\delta^{13}C$ neo-pentane is identical to that for non-biodegraded natural gas from the same source (Fig. 1), providing strong evidence that neo-pentane is biodegradation tolerant even within severely biodegraded gases. The carbon isotopic composition of neo-pentane ranges from -50.8 to -27.1% and is invariably isotopically lighter than iso-C₅ and n-C₅ (Fig. 1) with Δ^{13} C neoC₅ – i-C₅ between -1.8 and -8.3% for non-biodegraded gases; in biodegraded gases the iso-C₅ and n-C₅ become progressively enriched in ¹³C, resulting in much larger isotopic differences (Fig. 1). The data also highlights the specific to diverse microbial communities that act in the deep subsurface. Barrow Island gas shows a more propane-specific (very enriched in ¹³C) response whereas in Enfield there is a much earlier bioutilization of the other hydrocarbon gases.

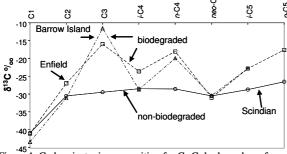


Figure 1. Carbon isotopic composition for C_1 - C_5 hydrocarbons from natural gases of the Carnarvon Basin, Western Australia