Ra-excess dating: hopes and limitations

C. HILLAIRE-MARCEL, B. GHALEB

AND E. PONS-BRANCHU

GEOTOP – UQAM & McGill, POB 8888, Montreal (Qc) H3C 3P8 Canada;

Among U-series isotopes, radium 226 has attracted much attention as it potentially permits i) to confront ¹⁴C-dates spanning the interval 0-8 kyr BP (226Ra-excess dating), ii) the precise dating of the 0-100 yr interval (²¹⁰Pb-excess), and iii) also provides useful information on geochemical processes (²²⁶Ra-Ba-Ca) and about ²²⁶Ra-²³⁰Th concordias in the 10-50 ka range. Applications for the study of speleothems, corals, mollusks, volcanic rocks, ground waters, soils have been explored. The $^{\rm 226} Ra\text{-}excess method is usually based on the$ assumption of a constant initial excess and/or ²²⁶Ra/Ba ratio. Here, we discuss ²¹⁰Pb-²²⁶Ra-²³⁰Th-U systematics and Ra-Ba geochemistry in aragonitic Scleractinian deep corals, calcitic and organic Gorgonian corals and sea water from North Atlantic sites. One gram (Ra,Pb) to 0.1g (U, Ba, Ca) of carbonate samples, and from 1 ml (U, Ca, Ba) to 250-500 mL (Ra) of water, are usually needed to perform TIMS measurements (Ra, U), isotope dilution ICP-MS analyses (Ba), and 210 Po alpha-counting (210 Pb analysis). Ra/Ba ratios in water samples show distinct entry functions for these two elements, besides radioactive decay of ²²⁶Ra, particularly in marginal marine settings and near deep hydrothermal sites. By combining ²³⁰Th-²³⁴U-²³⁸U and ²²⁶Ra measurements, initial ²²⁶Ra-excesses in carbonate minerals are examined. They indicate specific Ra/Ba fractionation, variable and possibly thermodependent Ra-uptake rates, thus raise concern about the reliability of ²²⁶Ra-excess ages. Applications for the validation of ²³⁰Th-ages of recent deep-sea corals are presented. Finally, ²¹⁰Pb-²²⁶Ra ratios in biogenic carbonate minerals as well as initial ²¹⁰Pb-excesses in organics corals are shown to provide good age estimates for the calculation of recent growth rates.