Mechanisms of equilibrium and kinetic oxygen isotope effects in synthetic aragonite at 25°C

SANG-TAE KIM¹, CLAUDE HILLAIRE-MARCEL² AND ALFONSO MUCCI¹

¹Earth and Planetary Sciences, McGill University, Montreal, Canada; (sangtae@eps.mcgill.ca)

² GEOTOP, Université du Québec á Montréal, Montréal, Canada; (chenv@uqam.ca)

Aragonite was precipitated in the laboratory at 25°C in isotopic equilibrium with Na-Ca-Mg-Cl-CO₃ solutions over two different pH ranges (i.e., pH = \sim 8.2 and \sim 10.8) by a constant addition method. On the basis of its isotopic composition and a newly determined mineral-specific acid fractionation factor (i.e., 1.01063), a new value is proposed for the oxygen isotope fractionation factor between aragonite and water at 25°C:

 $1000 \ln \alpha_{(aragonite-water)} = 28.84 \pm 0.09$

In order to elucidate the mechanism(s) of aragonite precipitation, the equilibrium oxygen isotope fractionations between HCO_3^{-}/CO_3^{2-} and H_2O at 25°C were also determined. The oxygen isotope compositions of BaCO₃ precipitated quantitatively and quasi-instantaneouly at three distinct pH and the mole fractions of the carbonic acid species in these solutions were combined to yield the following equilibrium oxygen isotope fractionation factors between HCO_3^{-}/CO_3^{2-} and H_2O at 25°C:

 $1000 \ln \alpha_{(bicarbonate ion-water)} = 30.53 \pm 0.08$ $1000 \ln \alpha_{(carbonate ion-water)} = 23.71 \pm 0.08$

The oxygen isotope composition of witherite obtained from fractional precipitation experiments, along with the estimated δ^{18} O values of HCO₃⁻ and CO₃²⁻ ions in the parent solution, revealed that CO₃²⁻ ions are preferentially incorporated into the growing crystal. In addition, preferential deprotonation of isotopically light HCO₃⁻ ions and the incorporation of the light CO₃²⁻ isotopologues are proposed to account for the kinetic isotope effects observed in the course of aragonite and witherite precipitations.