Salt and copper in iron oxide-coppergold systems, Cloncurry district, Australia

T. Baker¹, M.Bertelli¹, L. Fisher¹, B. Fu^{1,2}, W. Hodgson¹, M.Kendrick³, G.Mark⁴, R.Mustard¹, C.Ryan⁵ and P.J.Williams¹

¹ pmd*CRC, School of Earth Sciences, James Cook
University, Australia; (Timothy.Baker@jcu.edu.au)
² Dept. Geology and Geophysics, University of Wisconsin, USA

³ pmd*CRC, School of Earth Sciences, University of Melbourne, Australia

⁴ pmd*CRC, School of Geosciences, Monash University, Australia

⁵ pmd*CRC, CSIRO, Australia

Proterozoic rocks of the Cloncurry district in NW Queensland, Australia, are host to regional scale (tens to hundreds km) hydrothermal systems that include barren sodic-calcic alteration, granite-hosted systems that developed at the magmatic-hydrothermal transition, and iron oxide-copper-gold (IOCG) deposits. Fluid inclusion studies including Proton Induced X-ray Emission (PIXE) have been carried out to distinguish barren from mineralized systems and identify the sources of fluids.

Four main fluid inclusion types are recognised: (1) multisolid inclusions (Th \sim 200 and >550 °C, \sim 30 to >60 wt. % total salts), (2) three-phase halite-bearing inclusions (Th \sim 120 and 350°C, \sim 30 to 40 wt. % NaCl equiv.), (3) two-phase aqueous inclusions (Th \sim 100 to 250 °C, <5 to 35 wt. % NaCl equiv.), and (4) carbon dioxide (\pm solid phases) inclusions.

Multisolid inclusions occur primarily in IOCG and granite-hosted environments but are mostly absent in barren sodic-calcic alteration. PIXE analyses indicate that these inclusions contain the highest copper concentrations (>300 ppm) particularly in inclusions in granite-hosted settings and/or with Br/Cl ratios consistent with a possible magmatic origin. Br/Cl ratios also indicate an important role for evaporite-related fluids. Fluid mixing between Cu-rich (volumetrically minor?), magmatic fluids, and evaporite-related fluids with lower Cu contents, may have been an important ore deposition mechanism within the IOCG deposits.