The ¹⁴²Nd record of Hadean zircons

G. CARO^{1,2}, V.C. BENNETT³, B. BOURDON^{1,4}, T.M. HARRISON³ AND S. J. MOJZSIS⁵

¹IPGP, Lab. Geochimie.-Cosmochimie, Paris 75252 cedex 05, France

²Caltech, Division of Geol. and Planet. Sci., Pasadena CA 91125, USA, (caro@gps.caltech.edu)

³RSES, Australian National University, Canberra, A.C.T. 0200, Australia

⁴ ETH Zentrum, CH-8092 Zürich, Switzerland

⁵ Univ Colorado, Dept Geol Sci, Boulder, CO 80309, USA

146Sm-142Nd systematics were investigated in Hadean zircons to assess the potential of this system as a record of early Earth evolution. 790 zircons with >90% concordant ²⁰⁷Pb/²⁰⁶Pb ages from 3.95 to 4.19 Ga were selected from 32,000 surveyed grains from the Jack Hills quartzite (W. Australia). Zircons were leached in HNO₃ and dissolved at 200°C in HF using a metal-jacketed Teflon bomb. 10% of the solution was spiked using a mixed ¹⁴⁹Sm-¹⁵⁰Nd tracer while the remaining fraction was prepared for 142,143Nd/144Nd analysis. Purification of Nd from Ce was ensured by three successive elutions using an HDEHP column. Spiked Sm and Nd fractions were separated using a miniaturized HDEHP column. The yield was 90-95%. Sm and Nd blanks were 10-30 pg (1-3 pg for isotope dilution chemistry). The main fraction yielded 75 ng Nd which was analyzed in a single run using a Triton mass spectrometer. The sample yielded a long-lived (3 h), intense (142 Nd=10¹¹ A) beam allowing determination of ¹⁴²Nd/¹⁴⁴Nd ratio with a precision of ± 10 ppm ($2\sigma_m$). ¹⁴²Ce/¹⁴²Nd and ¹⁴⁴Sm/¹⁴⁴Nd were less than 10 ppm and 1 ppm respectively. No 142Nd anomaly was detected at the ± 10 ppm level (Table 1). Although in situ decay of ¹⁴⁶Sm in ca. 4.1 Ga zircons could produce ^{142}Nd excesses of ~25 ppm, initial $^{176}\text{Hf}/^{177}\text{Hf}$ results on individual zircons of similar age yielded both positive and negative ϵ_{Hf} values. Thus the bulk sample may have simply averaged out grains with ¹⁴²Nd excesses and deficits. However, the highly negative initial ϵ^{143} Nd (Table 1) suggests that the zircons were not closed systems for Sm-Nd since crystallization, possibly due to exchange with the host rock during metamorphism of the quartzite. The poor preservation of the Nd isotope record suggests that analysis of composited zircons is a problematic method with which to evaluate the Nd isotope evolution of early Earth.

[Nd] (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	$\epsilon^{143}Nd_0$	$\epsilon^{143}Nd_{4.1Ga}$	100*ε ¹⁴² Nd (ppm)
9.2	0.5891	45.4	-164.3	8.3±10.2