Direct U-series dating of fossil human bone by laser ablation MC-ICPMS

A.W.G. PIKE¹, G.L. FOSTER², C. STRINGER³, S.M. EGGINS⁴ AND R. $GR\ddot{U}N^4$

¹Department of Archaeology and Anthropology, University of Bristol, Bristol, BS8 1UU, UK; alistair.pike@bristol.ac.uk

² Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK

^{3.} Department of Palaeontology, Natural History Museum, London, SW7 5BD, UK

⁴ Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia

The recent application of laser ablation ICP-MS to Useries dating allows the measurement of U and Th isotopes in tiny samples and at a high spatial resolution. This technique is ideal for U-series dating of valuable human fossils because it can be made virtually non-destructive, and because the spatial distribution of U-series isotopes is required to model uranium uptake in bone using the diffusion-adsorption model.

We present results of recent dating studies on human fossils, including direct dating of the early anatomically modern human Omo Kibish 1.