¹⁸⁶Os-¹⁸⁷Os signatures of pyroxenites and the core-mantle interaction debate

A. LUGUET, G.M. NOWELL, D.G. PEARSON AND S.T. DREHER

Dpt of Earth Sciences, University of Durham, UK; <u>ambre.luguet@durham.ac.uk</u>,

There is growing evidence from major, trace elements and isotopic systematics (e.g. Nd, Pb, ¹⁸⁷Os) that pyroxenites are a significant constituant of oceanic basalt sources. A composite pyroxenite-peridotite mantle source has also been suggested as an alternative explanation for the coupled ¹⁸⁶Os-¹⁸⁷Os isotopic anomalies originally attributed to core-mantle interaction. In order to test this alternative hypothesis, we have analysed a large suite of pyroxenites from the Beni Bousera orogenic massif for highly siderophile elements (HSE) and ¹⁸⁷Os/¹⁸⁸Os ratios.

In Beni Bousera pyroxenites, Os, Pt and Re concentration ranges are 0.1-3 ppb, 0.8-7.2 ppb and 0.03-1.7 ppb respectively. These pyroxenites display a positive-sloped CIchondrite-normalised HSE patterns from Ir to Re $(Pt_N/Ir_N=0.65-10.22;$ $Pt_N/Re_N=0.02-0.76).$ Measured¹⁸⁷Os/¹⁸⁸Os ratios range is 0.1308-0.6747. ¹⁸⁶Os/¹⁸⁸Os ratios calculated from Pt/Os values and a typical age of 1.3 Gyr range from chondritic to highly radiogenic values (0.119839-0.119897). We are in the process of measuring ¹⁸⁶Os/¹⁸⁸Os ratios via an ultra-low blank high pressure asher acid digestion techniques. The pyroxenite measured so far gives a slightly sub-chondritic ¹⁸⁶Os/¹⁸⁸Os ratio (0.119836 \pm 3, 2 σ), within error of the predicted ratio (0.119839). This sample has a radiogenic ¹⁸⁷Os/¹⁸⁸Os ratio $(0.178552\pm 8, 2\sigma).$

Half of the pyroxenites show a radiogenic ¹⁸⁷Os/¹⁸⁸Os but non-radiogenic or only slightly radiogenic ¹⁸⁶Os/¹⁸⁸Os. Mixing of such pyroxenites with peridotitic mantle could explain the ¹⁸⁶Os-¹⁸⁷Os systematics of the Hawaian picrites characterized by radiogenic ¹⁸⁷Os but chondritic ¹⁸⁶Os signatures. In contrast, four pyroxenites display both radiogenic ¹⁸⁷Os/¹⁸⁸Os and ¹⁸⁶Os/¹⁸⁸Os ratios. In particular, one sample shows a highly radiogenic ¹⁸⁶Os/¹⁸⁸Os ratio at moderatly radiogenic ¹⁸⁷Os/¹⁸⁸Os. A mixing line constructed between this sample and chondritic mantle fits very well the trend defined by the ¹⁸⁶Os enriched Hawaian and Noril'sk basalts but requires between 40-90% of pyroxenite in the source. This simple mixing model takes into account neither the speciation of Os and the other HSE within the pyroxenites nor the influence of this speciation on the Os isotopic signature transfer. Os is known to be hosted by highly fusible and therefore highly mobile base-metal sulfides able to generate isotopic heterogeneities at the micrometric scale