Calibration of Terrestrial Cosmic-Ray-Produced Nuclides: CRONUS M.W. Caffee¹, G. Balco², R.C. Finkel³, A.J.T. Jull⁴, M.D. Kurz⁵, N. Lifton^{4,6}, S. McGee⁷, K. Nishiizumi⁸, F.M. Phillips⁷, Y. Schaefer⁹, J. Sisterson¹⁰, J.O. Stone² - ¹ Department of Physics and PRIME Lab, Purdue University; <u>mcaffee@physics.purdue.edu</u> - ² Department of Earth and Space Sciences, University of Washington; balco@u.washington.edu - ³CAMS, Lawrence Livermore National Laboratory; finkel1@llnl.gov - ⁴NSF Arizona AMS Facility, University of Arizona; jull@email.arizona.edu - ⁵Clark Laboratory, Woods Hole Oceanographic Institution; mkurz@whoi.edu - ⁶Geosciences Department, University of Arizona; <u>lifton@geo.arizona.edu</u> - ⁷Department of Earth & Environmental Science, New Mexico Tech; phillips@nmt.edu - ⁸Space Sciences Laobratory, University of California, Berkeley; <u>kuni@ssl.berkeley.edu</u> - ⁹Geochemistry, Lamont-Doherty Earth Observatory; schaefer@ldeo.columbia.edu - ¹⁰Francis H. Burr Proton Therapy Center, Massachusetts General Hospital; jsisterson@partners.org The radionuclides ¹⁰Be, ¹⁴C, ²⁶Al, and ³⁶Cl, and the least abundant noble gas isotopes, ³He and ²¹Ne, are used by geoscientists to quantify the chronologies and process rates associated with the continuously changing features of Earth's surface. As the questions probed by these techniques become more sophisticated so too must our knowledge of the factors that govern the production rates of cosmogenic nuclides. The NSFfunded CRONUS project was established to improve our understanding of the various factors that influence in-situ-cosmogenic nuclide production rates. Our approach is to utilize both geologic calibration sites and the measurement of production parameters in laboratory experiments to better constrain production rates. In the first year we collected samples from the well-dated Bonneville shorelines in Utah, Tabernacle Hills (³He, ¹⁴C, and ³⁶Cl) and Promontory Point (³He, ¹⁰Be, ¹⁴C, ²¹Ne, ²⁶Al, and ³⁶Cl), and performed neutron irradiations on specific target materials. Cl-36 has been measured in samples from Tabernacle Hills.