Utilising U-series disequilibria of calcic soils to constrain the surface age of Quaternary deposits: a comparison with ¹⁰Be, ²⁶Al age data from Patagonian glacial moraines

R.J. PHILLIPS^{1,2}, W.D. SHARP¹, B.S. SINGER³, AND D.C. DOUGLASS⁴

¹ Berkeley Geochronology Center, CA, USA; rphillips@bgc.org, wsharp@bgc.org

² Earth & Planetary Science, UC Berkeley, CA, USA; richardp@eps.berkeley.edu

³ Geology & Geophysics, University of Wisconsin-Madison, WI, USA; bsinger@geology.wisc.edu

⁴ Earth & Environmental Sciences, Northeastern University, MA, USA; d.Douglass@neu.edu

Calcic soils mantle ~20% of the Earth's land surface, generally forming where mean annual precipitation is <750mm. The timing of mid Pleistocene to Holocene calcic pedogenesis in gravelly deposits can be precisely established by mass spectrometric ²³⁰Th/U dating of carefully selected, mg-size samples of dense soil carbonate pebble coats. Moreover, if the onset of calcic pedogenesis is rapid, ²³⁰Th/U dating of early-formed soil carbonate may provide useful age estimates for glacio-fluvial terraces and other Quaternary surfaces and strata of interest in paleoclimatic, neotectonic and geomorphologic studies.

We have examined soil carbonate from Pleistocene moraines and outwash gravels near Lago Buenos Aires, Patagonia, where a detailed chronology for the last two glacial cycles has previously been determined using ¹⁰Be, ²⁶Al and ⁴⁰Ar/³⁹Ar dating techniques. ²³⁰Th/U dating of calcic soils developed in Last Glacial Maximum outwash gravels that post-date the Fenix V moraine yield ages between 20.6±1.6 ka and 16.6±0.5 ka (median U=1.7ppm, ²³²Th=0.3ppm, ²³⁰/₂₃₂AR=31; all errors at 2 σ). Comparison between maximum ¹⁰Be and ²⁶Al ages for the Fenix V moraine (23.7±4.8 ka) with maximum ²³⁰Th/U age data for associated outwash (20.6±1.6 ka) indicates a brief interval (<3ka) between surface stability and the onset of calcic pedogenesis during glacial conditions.

For the penultimate glaciation, ¹⁰Be, ²⁶Al and ⁴⁰Ar/³⁹Ar ages constrain deposition between 190 - 109 ka for the Moreno II moraine [1]. ²³⁰Th/U analyses of soil carbonate formed in outwash gravels correlated with Moreno II suggest onset of calcic pedogenesis between 170±8.3 ka and 146±4.8 ka (median U=1.6ppm, ²³²Th=0.2ppm, ²³⁰/₂₃₂AR=17), concurrent with MIS 6. In addition, a prominent interval of subsequent pedogenesis is constrained between 80.3±1.8 ka and 38.9±1.9 ka (median U=1.8ppm, ²³²Th=0.2ppm, ²³²Th=0.2ppm, ²³⁰/₂₃₂AR=13), broadly corresponding to MIS 4 and synchronous with increased dust influx as recorded in the Vostok ice record.

[1] Kaplan M.R., Douglass D.C., Singer B.S., Ackert R.P., Caffee M.W. (2005) *Quat. Res.* **63**, 301-315.