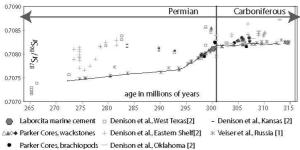
⁸⁷Sr/⁸⁶Sr Chemostratigraphy Across the Carboniferous-Permian Boundary

E.T. RASBURY¹, N.G. HEMMING², J.A.D. DICKSON³, J.E. BARRICK⁴, AND A.H. SALLER⁵


¹Department of Geosciences, SUNY Stony Brook ; troy.rasbury@sunysb.edu

² SEES, Queens College, CUNY; hemming@qc.edu

- ³ Department of Earth Science, Cambridge University; e-mail address; jadd1@esc.cam.ac.uk
- ⁴ Department of Geosciences, Texas Tech University; jim.barrick@ttu.edu

⁵ Chevron Corporation; asaller@chevron.com

The late Permian records one of the major ⁸⁷Sr/⁸⁶Sr lows of the Phanerozoic. The details of the decline from a late Carboniferous high of about 0.7082 to the ultimate low of 0.7069 are clouded by generally poor biostratigraphic control in the Permian. Based on U-Pb carbonate ages from calcretes and ⁸⁷Sr/⁸⁶Sr whole rock analyses from marine carbonates of the Central Basin Platform of the Permian Basin, we suggest that the decline in 87 Sr/ 86 Sr begins just before the boundary. Carboniferous-Permian Further, we postulate that this decline is uninterrupted to the major low based on comparison to results from type sections in Russia [1]. Overall, the change to less radiogenic values may signal a reduction in continental run-off, consistent with numerous sedimentologic proxies indicating drier climate going into the Permian.

Published datasets [1,2] are shifted by plus 11 Ma for comparison to U-Pb ages from the cores.

References

[1] Veiser et al. (1999) Chem Geol 161, 59-88.

[2] Denison et al. (1994) Chem Geol 112, 145-167.