Mobility of long-lived U-series radionuclides at an interface between claystone hosting old reducing pore water and an aquifer carrying young meteoric water

M. PEKALA, J.D. KRAMERS AND H.N WABER

Institute of Geological Sciences, University of Berne, Switzerland (pekala@geo.unibe.ch)

The Jurassic Opalinus Clay formation (OPA) in northern Switzerland is considered as a potential host rock for a deep underground nuclear waste repository. We are interested in the naturally occuring radionuclides which can provide valuable information regarding their long-term in-situ behaviour in this formation.

We studied the systematics of long-lived U-series radionuclides from Opalinus Clay (OPA) at its interface with an overlying limestone aquifer at the Mont Terri in the Jura Mts. This aquifer was activated ~2.5 Ma ago due to erosional incision that enabled inflow of young, meteoric water [1]. As a result reducing and stagnant pore water of OPA has been exposed to the oxidizing aquifer. This hydrogeological setting provides a unique opportunity to study the behaviour of long-lived U-series radionuclides at the interface of these two distinct environments and gives an insight into processes that govern their transport in OPA.

We investigated rock samples of OPA from 5 boreholes in close vicinity and at the interface with the aquifer. Two sampling approaches were employed: averaging of the core material to look at the record on a large scale (meters) and small-scale drilling within the cores in order to check for possible mobility on a centimeter scale. Samples were studied by sequential leaching with total digestion as a final step. ²³⁸U, ²³⁴U and ²³⁰Th concentrations and ratios were determined using MC-ICP-MS.

Our data points to a very slow diffusive redistribution of U in the OPA. Results obtained indicate two distinct periods of geochemical evolution: one before and one after the infiltration of meteoric waters into the aquifer. During the former a centimeter scale diffusion of 234 U governed by the in-situ supply from rock operated. This resulted in development of bulk rock (234 U/ 238 U) disequilibria above and below one in the regions of smaller and larger U content respectively. The fresh water infiltration changed the local gradients of both 234 U and 238 U in the pore water of portions of OPA directly bordering on the aquifer. As a consequence the previous regime record was overprinted indicating the depth of influence of the overlying oxidizing aquifer.

References

[1] Bossart P. and Wermeille S. (1999) Rep. Swiss nat. hydrol. and geol. Surv. **23**, Bern, 5-14.