A novel safe, simple, and rapid technique for $\delta^{18}O$ analysis of quartz

SIMON R. POULSON¹ AND GREG B. AREHART²

¹ Dept. Geological Sciences & Engineering MS172, Mackay School of Earth Sciences & Engineering, University of Nevada-Reno, Reno, NV 89557, USA; poulson@mines.unr.edu

² address as per ¹; arehart@unr.edu

Stable oxygen isotope analysis of silicates and oxides presents a frustrating conundrum in that many researchers are keen to utilize these analyses in their research, but these analyses require the use of extremely hazardous reagents, and also a very high level of operator skill and training.

A novel continuous flow very high temperature elemental analyzer – mass spec (high-T EA-MS) technique has been developed to perform δ^{18} O analyses of quartz. This technique is straightforward, rapid, and most importantly, requires no hazardous reagents. Samples are reacted at temperatures up to 3000°C in a stream of helium in the presence of graphite, using a graphite-electrode furnace (otherwise known as inert gas fusion analysis) to produce CO gas which is analyzed for δ^{18} O by continuous flow – mass spec analysis. Sample run times approach 10 minutes per analysis.

Results to date indicate an excellent correlation between $\delta^{18}O$ analyses of SiO₂ performed by the new high-T EA-MS technique vs. a laser fluorination technique (below: analyses normalized using $\delta^{18}O$ = +9.6% for NBS28 quartz). $\delta^{18}O$ analyses performed by both techniques have comparable uncertainties of approx. $\pm 0.15\%$ (1 σ). Method development continues, particularly the application of the new technique to analyze additional silicate and oxide minerals.

