Abiogenic methane formation in arc magmatic-hydrothermal systems

J. FIEBIG¹ and A.B. WOODLAND^{,1}

¹ Institut f
ür Geowissenschaften, J.W. Goethe Universit
ät, Senckenberganlage 32, 65934 Frankfurt am Main, Germany; Jens.Fiebig@em.uni-frankfurt.de

Methane (CH₄) may have contributed to the origin of life, both directly, i.e. as an educt for the synthesis of complex organic molecules (1), and indirectly, i.e. as a greenhouse gas that kept temperatures comfortable for early life (2). Biogenic generation of CH₄ by microbes or by thermal decomposition of organic matter is well documented (3). It is still a matter of debate if CH₄ can be produced abiogenically within the Earth's exosphere. Fluids discharging from ultramafic environments often contain CH₄ whose carbon isotopic composition is different from that of biogenic CH₄ (4). However, it remains unclear if the CH₄ released from such settings derives from the mantle or from the inorganic reduction of CO₂ under hydrothermal conditions provided by the oceanic crust (4).

We have investigated the chemical and isotopic composition of gases emanating from some subduction-related volcanichydrothermal settings of the Mediterranean. For the systems of Nisyros, Vesuvio and Ischia temperatures reflected by carbon isotope partitioning between CO₂ and CH₄ agree with those derived from a gas concentration geothermometer that is mainly based on CO/CO₂ ratios. Chemical and isotopic equilibrium pattern, CH₄/CO₂ concentration ratios as well as the carbon isotopic signature of CO₂ rule out both a biogenic and a mantle origin of CH₄. Instead, our results imply that CH₄ was generated by a Fischer-Tropsch type mechanism, i.e. the reduction of CO₂ under hydrothermal conditions.

The present-day flux of CH_4 from arc magmatic hydrothermal settings is negligibly small compared to the total input of CH_4 to the atmosphere. However, this flux strongly depends on the redox conditions of the rock matrix. CH_4 fluxes might have been orders of magnitude higher during the early Archean, provided that arc volcanism occurred on a global scale and that the upper arc-related crust was more basaltic in composition.

References

(1) Miller, S.L. (1953) Science 117, 528-529.

(2) Catling, D.C., Zahnle, K.J., and Mc Kay, C.P. (2001) *Science* **293**, 839-843.

(3) Whiticar, M.J. (1999) Chem. Geol. 161, 291-314.

(4) Welhan, J.A. and Craig, H. (1983) NATO Conf. Ser. IV, Mar. Sci. 12, 391-409.