In-situ diffusion experiments in Callovo-Oxfordian mudstone

S. DEWONCK¹, M. DESCOSTES², V. BLIN², E. TEVISSEN², J. RADWAN², C. POINSSOT², A. CARTALADE³, P. BRISSET⁴ AND D. COELHO⁵

¹ ANDRA, Underground Research Laboratory RD 960 -55290 BURE (France), <u>sarah.dewonck@andra.fr</u>

² CEA Saclay DEN/DPC/SECR, 91191 Gif sur Yvette Cedex (France), <u>michael.descostes@cea.fr</u>

³CEA Saclay DEN/DM2S/SFME, 91191 Gif sur Yvette Cedex (France), <u>alain.cartalade@cea.fr</u>

⁴ CEA Saclay DRT/DeTeCS/SSTM, 91191 Gif sur Yvette Cedex (France), patrick.brisset@cea.fr

⁵ ANDRA, 1-7 rue Jean Monnet, Châtenay-Malabry, 92298 Cedex (France), <u>daniel.coelho@andra.fr</u>

The French National Agency for radioactive waste management (Andra) investigates the feasability of a highlevel radioactive waste repository in deep geological formation. This concept is based notably on the impermeable properties of the host rock barrier (the Callovo-Oxfordian mudstone of the Eastern Paris Basin). Diffusion is assumed to be the main transport mechanism governing radionuclide migration through argillite. Diffusion properties were measured i) on a large set of 1 cm-wide samples from drill cores, using through-diffusion cells at CEA Saclay and ii) in situ, in the constrained rock, by seven experiments carried out in Andra's Underground Research Laboratory. Among these in-situ experiments, one is particulary innovative and original. Flow circulation starts at the down to 542 m depth, through 1 km of hydraulic lines. This in-situ diffusion experiment gave access to the diffusive parameters of the Callovo-Oxfordian argillite for Co, Nb, HTO, ¹³⁴Cs, and ³⁶Cl. Monitoring of tracer concentrations and water geochemistry in the circulating fluid (Figure) was carried out for 12 months. Average diffusion properties (diffusion coefficients, porosity and eventually K_d) are estimated based on empirical correlations between the various transport parameters (Archie Law). The obtained results are in good agreement with those obtained from through-diffusion tests on drill core samples.

