The ¹²⁹I anthropogenic budget: Sources and sinks

A. ALDAHAN¹, V. ALFIMOV² AND G. POSSNERT²

¹Department of Earth Sciences, Uppsala University, SE-758 36 Uppsala, Sweden

²Tandem Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden

There has been considerable interest in utilizing anthropogenic ¹²⁹I as a geochemical tracer in a wide range of natural reservoirs. Consequently, large numbers of data are now generated with respect to the distribution of the isotope in the hydrosphere and atmosphere and to a lesser extent in the lithosphere and biosphere. In this report, a summary of ¹²⁹I data sets from our group and others are used to elucidate the expected concentration levels and inventory in the Earth's surface environments. These data are further evaluated in terms of ¹²⁹I releases from the different anthropogenic sources. The results show dependence of ¹²⁹I distribution on distance from the sources and from the sea. The European atmosphere contains much higher concentration of the isotope than in other continents. Apart from the Irish Sea and the English Channel, the North Sea, the Nordic Seas and the Eurasian basin of the Arctic Ocean show the highest concentration of ¹²⁹I compared to other marine waters. Distribution of anthropogenic ¹²⁹I in the lithosphere is not well constrained and the available data suggest strongly localized concentration patterns. The data on ¹²⁹I content in the biosphere is rather scarce, but a link to distance from sources can be inferred. A simple budget calculation indicates some discrepancy between the released amounts of ¹²⁹I and inventory in the natural reservoirs. This situation may relate to lack of complete environmental coverage or fate of releases from the sources, and to other unknown parameters.

¹²⁹I/¹²⁷I ratios in surface waters of the English Lake District

M. ATARASHI-ANDOH¹, C. SCHNABEL², G. COOK², A. DOUGANS², R. ELLAM², S. FREEMAN², A.B. MACKENZIE², C. MADEN², V. OLIVE², H.-A. SYNAL³ AND S. XU²

 ¹Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan (mariko@popsvr.tokai.jaeri.go.jp)
²Scottish Universities Environmental Research Centre, Scottish Enterprise Tech. Park, East Kilbride G75 0OF,

United Kingdom (c.schnabel@suerc.gla.ac.uk)

³Inst. Particle Physics, ETH Zurich, CH-8093 Zurich, Switzerland

¹²⁹I concentrations in surface reservoirs have increased by anthropogenic release since the beginning of the nuclear age. At present, the main sources of ¹²⁹I are the two nuclear fuel reprocessing facilities (Sellafield and La Hague) in western Europe. ¹²⁹I/¹²⁷I ratios were measured in surface sea, lake and river water taken in 2004 in the area near the Sellafield nuclear fuel reprocessing plant in northern England, including the Lake District and southern Scotland. The ¹²⁹I/¹²⁷I ratio is a better tracer than ¹²⁹I concentration to determine the pathways of iodine emissions from the reprocessing plants and this is the first observation of the ¹²⁹I/¹²⁷I ratio in lake water in the Lake District. About 112 kg and 4 kg of 129 I were discharged from Sellafield into the Irish Sea and atmosphere, respectively, in 2002. Iodine is transferred from sea to land. The lakes in the Lake District receive ¹²⁷I from the sea and ¹²⁹I from both the sea and gaseous emission from Sellafield. Thus, ¹²⁹I/¹²⁷I in the water of these lakes depends on the distance from the sea and Sellafield, the geological character of the catchment area and the meteorological conditions.

The ¹²⁷I concentration was measured by ICP-MS. The ¹²⁹I concentration was measured using AMS at SUERC and/or ETH. The ¹²⁹I/¹²⁷I in samples was derived from ¹²⁷I and ¹²⁹I concentrations.

The ¹²⁹I/¹²⁷I ratio in sea water collected from the sea shore in Parton, 17km north of Sellafield, was 8.1×10^{-6} . This ratio is one order of magnitude higher than that in sea water collected from Maryport, 16 km north-east of Parton, in 1992 by Raisbeck *et al.* (1995). The ¹²⁹I/¹²⁷I ratios in lake water in the Lake District were lower but in the same order of magnitude as the ratio in sea water from Parton.

Reference

Raisbeck G.M., Yiou F., Zhou Z.Q., Kilius L.R., (1995), Journal of Marine Systems 6, 561-570