Sulfur multiple isotope constraints on the Cenozoic-Cretaceous sulfur cycle

BOSWELL A. WING¹, DAVID T. JOHNSTON¹, SHUHEI ONO², JAMES FARQUHAR¹ AND ADINA PAYTAN³

¹ESSIC and Department of Geology, University of Maryland, College Park, MD 20742, USA (wing@essic.umd.edu, dtj@geol.umd.edu, jfarquha@essic.umd.edu)

²Geophysical Laboratory, Carnegie Institution of Washington, Washington DC 20015, USA (s.ono@gl.ciw.edu)

³Department of Geological and Environmental Sciences, Stanford University, Stanford CA 94305, USA (apaytan@pangea.stanford.edu)

Marine barite provides a robust record of the isotopic evolution of seawater sulfate (Paytan et al., 1998, 2004). We are extending the existing data set of δ^{34} S values with high-precision sulfur multiple isotope measurements of marine barite from the last ~120 Ma. Measurements of ³³S and ³⁶S abundances provide information that is complementary to ³⁴S abundances for two reasons, both of which require high-precision measurements to be meaningfully applied. First, individual processes can fractionate sulfur multiple isotopes along trajectories other than the reference mass-dependent fractionation lines that are defined by

 $\Delta^{33}S = ln(\delta^{33}S/1000+1) - 0.515 \times ln(\delta^{34}S/1000+1) = 0,$ and

 $\Delta^{36}S = ln(\delta^{36}S/1000+1) - 1.9 \times ln(\delta^{34}S/1000+1) = 0.$

Second, the trace abundance approximation is valid for the sulfur multiple isotope system, which results in linear isotope mass-balance equations. Isotope fractionation follows an exponential relationship, however, and the co-operation of fractionation and mass balance can produce nonzero Δ^{33} S and Δ^{36} S. Recent calibrations of sulfur multiple isotope effects due to different bacterial metabolisms (e.g., Johnston et al., 2005) allow for a rigorous interpretation of the sulfur multiple isotope evolution of seawater sulfate. We use these calibrations in simple isotope mass-balance models to constrain relative mass fluxes through different sulfur conversion pathways. External reproducibility in sulfur multiple isotope measurements are <0.01‰ for Δ^{33} S and <0.1‰ for Δ '³⁶S. At their present range of variability (e.g., $\Delta'^{33}S_{max}-\Delta'^{33}S_{min} \sim 0.08; \Delta'^{36}S_{max}-\Delta'^{36}S_{min} \sim 1.0), our$ measurements are producing an information-rich record (Δ'^{33} S signal/noise > 8, Δ'^{36} S signal/noise > 10) of the Cenozoic-Cretaceous sulfur cycle.

References

- Johnston, D. T., Farquhar, J., Wing, B. A., Kaufman, A. J., Canfield, D. E., and Habicht, K. S. (in press) *Am. Jour. Sci.*
- Paytan, A., Kastner, M., Campbell, D., and Thiemens, M. H. (1998) *Science*, v. 282, p. 1459-1462
- Paytan, A., Kastner, M., Campbell, D., and Thiemens, M. H. (2004) *Science*, v. 304, p. 1663-1665

Using the multiple isotopes of sulfur to constrain microbial processes in the Proterozoic ocean

D.T. JOHNSTON¹, J. FARQUHAR¹, B.A. WING¹, T. LYONS², L. KAH³, H. STRAUSS⁴ AND D.E. CANFIELD⁵

¹Dept. of Geology and ESSIC, Univ. of Maryland (dtj@geol.umd.edu)

²Dept. of Earth Sciences, Univ. of California, Riverside
³Dept. of Earth and Planetary Sciences, Univ. of Tennessee
⁴Geologisch-Paläontologisches Inst, Univ. Münster
⁵Inst of Biology, Univ. of Southern Denmark

It has been argued that widespread sulfidic deep ocean conditions during the Proterozoic resulted from a predominance of sulfate reducing bacteria (SRB) and their effects on the biogeochemical sulphur cycle [1]. It has further been suggested that sulfur disproportionation (SDB) metabolisms did not begin to play a significant role in the cycling of sulfur until early in the Neoproterozoic [1]. Differences in the metabolic style of SRB and SDB cause measurable differences in the $\Delta^{i33}S_{sulfate}$ that can be used to evaluate these hypotheses [2, 3].

Here we present measurements of the four stable isotopes of sulfur (32 S, 33 S, 34 S, 36 S) for proxies of seawater sulfate (CAS, evaporite sulfate, and barite) that we use to evaluate these hypotheses and to test our earlier proposals. Reproducibility of these measurements are 0.01 ‰ or better, clearly demonstrating a small negative excursion of Δ'^{133} S_{sulfate} from samples older than ~1 Ga and a small positive excursion for Δ'^{133} S_{sulfate} from samples younger than ~1 Ga (Fig 1.).

Figure 1: Δ ³³S of oceanic sulfate proxies versus time.

We interpret negative $\Delta^{i33}S_{sulfate}$ to imply a SRB dominated biogeochemical sulfur cycle while small positive $\Delta^{i33}S_{sulfate}$ may reflect the added influence of SDB, both have implications for the oxidation state of the Proterozoic ocean.

References

- [1] Canfield, D.E. (1998) Nature **396**, 450-453.
- [2] Farquhar, J. et al. (2003) Geobiology, 1, 27-35.
- [3] Johnston, D.T. et al., (in press), AJS.