Controls on paleo-alkenone δ^{13}C

MARK PAGANI

Yale University, Department of Geology and Geophysics, New Haven, CT, USA (mark.pagani@yale.edu)

The carbon isotopic fractionation that occurs during marine photosynthetic carbon fixation (ε_p) is primarily a function of surface-water [CO_2]_aq, growth rate, and cell geometry. Although modern data suggest that haptophyte growth rates exert a dominant control on the value of ε_p, some patterns of paleo-ε_p change are contrary to changes in nutrients inferred from foraminiferal trace element concentrations. Further, comparison of ε_p values for the past ~45 million years with ε_p values from modern growth environments, spanning oligotrophic to eutrophic sites, indicate that changes in algal growth rate is not the first-order control on the long-term trend. If changes in cell geometry of alkenone-producers were minimal, then long-term trends in ε_p qualitatively reflect a decrease in [CO_2]_aq from the middle Eocene to the early Oligocene. Atmospheric carbon dioxide concentrations can be estimated using the modern calibration for ε_p as a function of surface-water [PO_4]_aq and [CO_2]_aq, assuming the range of Paleo-[PO_4]_aq for each site was similar to modern distributions. This approach yields middle Eocene pCO_2 levels ~3 to 5 times that of modern levels. pCO_2 rapidly declined following the Eocene/Oligocene boundary reaching modern concentrations near the end of the Oligocene.

Recent measurements of coccolith geometries suggest changes in algal geometries of alkenone-producing algae did occur. These results and their impact on carbon dioxide estimates will be discussed.

The importance of a vital effect on the Ca isotopic composition of foraminiferal tests

A. GALY, N.G. SIME AND E.T. TIPPER

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, United Kingdom (albert00@esc.cam.ac.uk, ngs20@esc.cam.ac.uk, ett20@esc.cam.ac.uk)

The influence of temperature on Ca isotope fractionation during biomineralisation was investigated through the paired analyses of δ^{44/42}Ca (via MC-ICP-MS) and δ^{18}O on the calcite tests of twelve species of planktonic foraminifera from core-top sediments [1]. No significant correlation between temperature and Ca isotopes was observed in any of the twelve species of foraminifera investigated. The results suggest that the theoretically-expected relationship [2-3] between Ca isotopes and temperature can be obscured by, as yet, unquantified metabolic and physiological processes in nature. Variable growth-rate could be a reason for this vital effect [3] but cannot explain inter-species variations. Vital effects on Ca-isotopes are particularly relevant to the globorotaliid species and *G. bulloides* in core-top studies but could also explain the discrepancy between laboratory-determined temperature calibrations and core-top data for *G. sacculifer* [4]. It is doubtful that the effects of metabolic and physiological processes remained constant through time. This could complicate models of the temporal evolution of the Ca isotopic composition of seawater by introducing a variable fractionation factor between seawater and the carbonate sink.

References