Lead transport and speciation in organic horizons of forest soils

J.M. KASTE¹, A.J. FRIEDLAND², B.C. BOSTICK¹ AND A.W. SCHROTH¹

¹Dartmouth College Earth Sciences 6105, Hanover, NH 03755, USA (jim.kaste@dartmouth.edu, ben.bostick@dartmouth.edu, andrew.schroth@dartmouth.edu)
²Dartmouth College Environmental Studies 6182, Hanover,

NH 03755, USA (andy.friedland@dartmouth.edu)

Anthropogenic emissions during the 20th century resulted in global lead (Pb) contamination of soils. Remote forests in New England received 1 to 4 g Pb m-2, with higher amounts deposited at montane sites. We present isotopic and soil timeseries data demonstrating that forest floor horizons (e.g., the upper 5 to 9 cm of organic material) retain atmosphericallydelivered Pb in excess of 50 years. Despite their role in retaining lead, the precise nature of Pb partitioning within this organic-rich matrix remains elusive. Selective chemical extractions and x-ray absorption spectroscopy suggest that Pb is frequently bound to organics; however, a significant proportion of the Pb appears to be associated with inorganic phases. Extractions with sodium hydroxide and Na₂P₄O₇, two commonly used treatments for targeting organically-bound metals released 50 to 100% of the Pb, but the specificity of these reagents to organic matter are suspect. Selective chemical extractions with the reducing agent hydroxylamine hydrochloride released up to 40% of the Pb, but liberated negligible organic matter. Lead released during chemical extractions coincided with iron release. We conclude that despite very high organic matter contents (>80%) a significant proportion of the lead in forest floor horizons may associated with inorganic and possibly "reducible" mineral phases.

A potentiometric and ¹¹³Cd NMR study of cadmium complexation by natural organic matter at two different magnetic field strengths

E. MICHAEL PERDUE¹, NORBERT HERTKORN² AND ANTONIUS KETTRUP²

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

²Institute for Ecological Chemistry, GSF Research Center for Environment and Health, D-85758 Oberschleißheim, Germany

The binding of cadmium(II) to Suwannee River natural organic matter (NOM) has been investigated across a broad range of molar Cd/C ratios (0.00056 - 0.0056) and pH values (3.5 - 11) by ¹¹³Cd NMR spectroscopy at two magnetic field strengths ($B_0 = 9.4$ and 11.2 T). As a result of the very peculiar and highly complex characteristics of the Cd-NOM exchanging system, these ¹¹³Cd NMR spectra are characterized by a pH- and concentration-dependent superposition of slow, intermediate and fast chemical exchange. Detailed insight into the complex interplay of solution chemistry and chemical exchange is provided by a thorough mapping of this Cd-NOM chemically exchanging system through acquisition of more than 100¹¹³Cd NMR spectra at two magnetic field strengths and with systematic variation of Cd/C ratios and pH values. The interpretation of ¹¹³Cd NMR spectra is greatly facilitated and constrained by simultaneous measurements of pH and pCd, which allows a model-independent calculation of organically bound Cd(II) under all experimental conditions. Under the conditions applied in this study, Cd(II) has been found to bind to oxygen, nitrogen, and, to a much lesser extent, sulfur ligands of NOM.