Structure of Zn²⁺ at rutile TiO₂ (110)aqueous solution interface

Z. ZHANG¹, P. FENTER¹, S. D. KELLY¹, J. G.CATALANO¹, J. D. KUBICKI², A. BANDURA³, D. J. WESOLOWSKI⁴, M. L. MACHESKY⁵, N. C. STURCHIO⁶, AND M. J. BEDZYK⁷

- ¹Argonne National Laboratory, Argonne, IL, USA (zhanzhang@anl.gov, fenter@anl.gov, skelly@anl.gov, catalano@anl.gov)
- ²The Pennsylvania State University, University Park, PA, USA (kubicki@geosc.psu.edu)
- ³St. Petersburg State University, St. Petersburg, Russia (andrei.bandura@pobox.spbu.ru)
- ⁴Oak Ridge National Laboratory, Oak Ridge, TN, USA (wesolowskid@ornl.gov)
- ⁵Illinois State Water Survey, Champaign, IL, USA (machesky@sws.uiuc.edu)
- ⁶University of Illinois at Chicago, Chicago, IL, USA (sturchio@uic.edu)
- ⁷Northwestern University, Evanston, IL, USA (bedzyk@northwestern.edu)

Recent studies of the adsorption of mono-, di- and trivalent cations to the rutile (110)-water interface established that Zn^{2+} ions adsorb in a manner that is distinct from all other ions studied [1]. In particular, it was observed that Zn^{2+} adsorbs in two distinct sites: primarily above the surface bridging oxygen (BO) sites, and with a smaller amount bridging between terminal oxygen (TO) sites. To understand these observations, we have undertaken a more in-depth investigation of Zn^{2+} -rutile interactions, its partitioning between the two surface sites, and the surface Zn^{2+} coordination environment.

Bragg XSW measurements of rutile (110) in $[Zn^{2+}] = 10^{-5}$ mol/kg solution at pH 6 and 8, using the model independent XSW imaging method, reveal the site distribution of adsorbed Zn^{2+} ions projected into rutile unit cell. Quantitative refined Zn^{2+} positions and the fractional occupations at each position are then achieved with XSW triangulation. Polarized EXAFS measurements in $[Zn^{2+}] = 10^{-5}$ mol/kg solution at pH 8 with X-ray polarization along the rutile [110], [-110], and [001] crystallographic directions reveal the local Zn-O coordination of the adsorbed Zn^{2+} . The results are compared to density functional theory (DFT) calculations of 4- and 6-fold coordinated Zn at rutile (110) –water interface, and the results are discussed in the context of bond valence model.

Reference

[1] Zhang et al. (2004) Langmuir 20(12), 4954-4969.