The onset of hyper-aridity in the Atacama Desert: Nitrate Δ^{17} O as a tracer of soil moisture

GREG MICHALSKI,¹ JASON RECH² AND MARK THIEMENS³

¹gmichalski@ucsd.edu ²rechja@muohio.edu ³mht@chem.ucsd.edu

Nitrate minerals are abundant in the Atacama Desert of northern Chile. The large Δ^{17} O signal (~20‰) observed in these nitrates substantiates the hypothesis that they are the results of 200k to 1M years of atmospheric deposition of photochemically produced nitrate. In wetter regions, the Δ^{17} O signal is tempered by mixing with nitrate produced by N fixation or nitrification of organic N. Recent measurements of Δ^{17} O in nitrate found within the Barros Arana paleosol (~10M y, elev.1500-2000m) are substantially lower (~10 ‰) than those found in modern Atacama soils and suggests that the Atacama was substantially wetter during the formation Barros Arana paleosol . This has implications for determining the onset hyperarid causalities such as the uplift of the central Andes, changes in the strength of the Humboldt Current, and global climate change.

The mass-independent oxygen isotope anomaly in CO₂: From single collision experiments to global climate change

KRISTIE A. BOERING

Departments of Chemistry and of Earth and Planetary Science, University of California, Berkeley, CA, USA (boering@cchem.berkeley.edu)

Observations of the triple oxygen isotope anomaly in stratospheric CO₂ from whole air samples collected from the NASA ER-2 aircraft [1] and high altitude balloons, combined with chemical dynamics experiments on the reaction $O(^{1}D)+CO_{2}$, [2,3] laboratory experiments photolyzing CO₂ and O₂ gas mixtures in the ultraviolet, [4] and 0D and 2D modeling, [4] are providing new insights into the mass-independent isotope anomaly in stratospheric CO₂. Recent results are providing the molecular level detail and understanding needed to use the CO₂ isotope anomaly as a tracer of biosphere productivity on annual [5] to millennial [6] timescales. Highlights of these laboratory, atmospheric, and modeling studies and their geochemical applications will be presented.

References

- e.g., Boering, K,A., Jackson, T., Hoag, K., Cole, A.S., Perri, M., Thiemens, M.H. and Atlas, E., (2004), *Geophys. Res. Lett.* 31, L03109, doi:10.1029/2003GL018451.
- [2] Perri, M.J., Van Wyngarden, A.L., Boering, K.A., Lin, J.J. and Lee, Y.T., (2003), *J. Chem. Phys.* 119 (16), 8213-8216.
- [3] Perri, M.J., Van Wyngarden, A.L., Lin, J.J., Lee, Y.T., and Boering, K.A., (2004), *J. Phys. Chem.* A 108 (39), 7995-8001, doi:10.1021/jp0485845.
- [4] Cole, A.S. and Boering, K.A., (2004), Eos Trans. AGU 85 (17), Joint American-Canadian Geophysical Union Meeting, Jt. Assem. Suppl., Abstract B51A-05.
- [5] Hoag, K.J., Still, C.J., Fung, I.Y., and Boering, K.A., (2005), *Geophys. Res. Lett.*, in press.
- [6] Luz, B., Barkan, E., Bender, M.L., Thiemens, M.H., and Boering, K. A., (1999), *Nature* 400, 547-550.