Producing U-series disequilibria through ultraslow crustal accretion

JARED J. STANDISH,¹ K.W.W. SIMS,² AND H.J.B. DICK²

¹MIT/WHOI Joint Program (jstandish@whoi.edu) ²G&G, Woods Hole Oceanographic Institution,

(ksims@whoi.edu, hdick@whoi.edu)

 238 U- 230 Th- 226 Ra disequilibria measurements on 12 dredged glasses from between 9-25° E on the SW Indian Ridge show highly variable U-series systematics. The suite as a whole exhibits a large range in 230 Th/ 232 Th and 238 U/ 232 Th, covering nearly the entire extent of variability seen in the global MORB U-series database. Glasses from the oblique supersegment show the most enriched compositions (230 Th/ 232 Th = 0.8 and 238 U/ 232 Th = 0.76) of any MORB measured but have minor 230 Th excesses (<9%) or small 238 U excesses (~3.5%). In contrast, Th excesses in lavas from the orthogonal supersegment vary from 2–29%, but show no systematic trend and do not appear to be correlated with any other geochemical tracers. The same holds for (230 Th/ 238 U) on the oblique supersegment.

However, ²³⁰Th/²³²Th and ²³⁸U/²³²Th are correlated with Sr, Nd, and Hf isotopic compositions, indicating that Th isotopic compositions and U/Th reflect similar source heterogeneity. δ Sm/Nd and δ Lu/Hf are calculated trace element parameters used as proxies for total % melting and % melting in the garnet stability field, respectively. When plotted against Th excess, orthogonal supersegment lavas show variable but increasing (²³⁰Th/²³⁸U) with slightly increasing δ Sm/Nd and δ Lu/Hf. On the other hand, the oblique supersegment lavas show increasing (²³⁰Th/²³⁸U) correlated with decreasing δ Sm/Nd and δ Lu/Hf. This broadly suggests that the deeper the melting the lower the Th excess, and the larger the F the larger the Th excess.

Our data do not support the idea that Th excess is a function of spreading rate or axial depth, as initially proposed by Lundstrom et al., 1998 and Bourdon et al., 1996, respectively. However, SW Indian Ridge 230 Th/ 232 Th and 238 U/ 232 Th compositions do correlate with Sr, Nd, and Hf isotopic compositions, suggesting temporal equilibration of these isotopic systems.

References

- Bourdon, B., A. Zindler, R. Elliot, C.H. Langmuir, (1996) Nature, Vol. 384.
- Lundstrom, C.C., Q. Williams, and J.B. Gill, (1998) EPSL, 157.

Diffusive fractionation of ²²⁶Ra-²³⁰Th in oceanic basalts during shallow level interaction

A.E. SAAL¹ AND J.A. VAN ORMAN²

¹Dept. Geological Sci., Brown Univ. (asaal@brown.edu) ²Dept. Geological Sci. Case Western Reserve Univ. (jav12@cwru.edu)

Complex melting and percolation models with a twoporosity system have been proposed to explain the high ²²⁶Ra excess in oceanic basalts and the observed inverse correlations of the ²²⁶Ra excess with the ²³⁰Th excess and with the trace element enrichment of MOR lavas [1]. We have offered an alternative hypothesis that interaction of primitive melts with MORB cumulates (troctolites or wehrlites) could be responsible for those geochemical signatures [2]. However, our previous model considered the interaction of a melt with only one solid phase (plagioclase or clinopyroxene). Here, we present the results of a more realistic model that considers the diffusive interaction among a melt and multiple solid phases (plagioclase and clinopyroxene) [3]. Our calculations suggest that diffusive interaction between gabbros and basalts can explain the observed inverse correlation of the (226Ra/230Th) ratios with the $(^{230}\text{Th}/^{238}\text{U})$ ratios in MORBs, and with the tarce element enrichment of oceanic basalts. Furthermore, in contrast to the two-porosity model, our model gives a simple explanation for the lack of high 226 Ra excess (generally < 1.7) observed in oceanic island primitive melts.

References

- Kelemen, P.B., Hirth G., Shimizu, N., Spiegelman, M. and Dick, H.J.B., (1997) *Phil. Trans. R. Soc. Lond.* A 355, 1-35.
- [2] Saal, A.E. and Van Orman, J.A., (2004), *Geochem. Geophys. Geosys.* **5**, (2) 2003GC000620.
- [3] Van Orman, J.A., Saal, A.E., Bourdon, B. and Hauri, E. H. (2004). *Abstract. EOS Trans. AGU*, **85**, (47), Fall Meet. Suppl., V51E-02.