As a well-defined hotspot track the Hawaiian Ridge-Emperor Seamount Chain plays an important role in our understanding of mantle plumes. Geochemical studies on Hawaiian shield-stage lavas indicate considerable heterogeneity in radiogenic isotopic ratios, implying a heterogeneous Hawaiian plume. Specifically, among Hawaiian shield-stage lavas, lavas from the surface of Koolau (Makapuu-stage) have the highest 143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, Th/La and total iron content. Lavas from Loihi are characterized by the highest 3He/4He. Lavas from Mauna Kea are characterized by the lowest 87Sr/86Sr and highest 143Nd/144Nd, ε_{Nd} and Pb isotopic ratios. Other Hawaiian shield-stage lavas can be explained by variable mixing proportions of these three components (Koolau, Mauna Kea and Loihi). Despite substantial isotopic variations in Hawaiian shield-stage lavas, they have similar trace element ratios such as Hf/Pb (see inset in figure). Consequently, we infer that mixing lines among different source components for Hawaiian shield lavas are near-linear. This inference contrasts with the hyperbolic trend of 206Pb/204Pb-ε_{Nd}, which requires a factor of 15 difference in Hf/Pb for two-component mixing (see figure). A possible explanation could be that an additional source component, similar to that manifested in Hawaiian rejuvenated-stage lavas, is also sampled by shield-stage lavas.