1.4.P10

High-T non-stoichiometry of titanomagnetite re-examined – New experimental data

U. SAUERZAPF, D. LATTARD, A. ULLRICH AND R. ENGELMANN

Mineralogisches Institut Universität Heidelberg, (ursula.sauerzapf@min.uni-heidelberg.de)

Titanomagnetite (Tmt; solid solution between magnetite and ulvöspinel (Usp)) can depart from stoichiometry at high temperature, depending on T, X and fO_2 . However, existing studies [1-5] cover only a limited T-X-range: Most data have been retrieved at 1300-1275°C [1, 2, 3, 5], but at 1100-1200°C only few compositions with $X_{Usp} \leq 0.75$ were examined [1, 4]. There are serious disagreements about the concentrations of the cationic vacancies and no data are available on Mg and Al-bearing Tmt, which are particularly relevant for natural basaltic systems.

To obtain Tmt with maximum vs. minimum vacancy concentrations, we are synthesising assemblages of Tmt with either ilmenite-hematite_{ss} or with wüstite_{ss} in the system Fe-Ti-O \pm Mg \pm Al at 950-1300°C, 1 bar and oxygen fugacities in the range FMQ –4 to +5. The run products are drop-quenched into water and examined with a combination of several methods with the aim of quantifying the concentration of the cationic vacancies. We are currently focussing on two methods:

a) Precise determination of the **unit cell parameter of Tmt.** In agreement with [3], 1300°C samples show, especially at high X_{Usp} , significantly lower a_o in Tmt coexisting with IIm_{ss} vs. those coexisting with Wü, pointing to cationic vacancies in the first case. Preliminary results suggest that Tmt equilibrated with IIm_{ss} at 950 and 1100°C in the Fe-Ti-O system are nearly stoichiometric.

b) Annealing at 950°C of high-T run products sealed in evacuated silica glass ampoules in order to heal the cationic vacancies. The vacancy relaxation results in the formation of IIm_{ss} exsolution lamellae and rims [5]. The original vacancy concentration can be calculated from the shift of the molar proportions (image analysis) and chemical compositions (EMP) of the coexisting Tmt and IIm_{ss} . Again, preliminary results suggest near-stoichiometry for Mg- and Al-free Tmt in equilibrium with IIm_{ss} at 1100°C.

References

- [1] Dieckmann R. (1982) BBPC 86, 112-118.
- [2] Hauptmann Z. (1974) GJRAS 38, 19-47.
- [3] Senderov E., Dogan A.U., Navrotsky A. (1993) AM 78, 565-573.
- [4] Aggarwal S., Dieckmann R. (2002) PCM 29, 695-706.
- [5] Lattard D. (1995) AM 80, 968-981.

1.4.P11

Solid solutions in the titanite structure field

R. ELLEMANN-OLESEN AND T. MALCHEREK

Mineralogisches Institut, Universität Heidelberg, Im Neuenheimer Feld 236, D-69120 Heidelberg (ellemann@min.uni-heidelberg.de)

Solid solubility and structural phase transitions in the compounds $CaTi(Ge_xSi_{1-x})O_5$, $(Ca_xSr_{1-x})TiGeO_5$, and $Ca(Ti_xZr_{1-x})GeO_5$ have been studied in order to gain insights into the driving forces of structural phase transitions in these transition metal compounds. The room temperature structures of $CaTiGeO_5$ and $SrTiGeO_5$ are isomorphous with the low-temperature structure of titanite, $CaTiSiO_5$ whereas $CaZrGeO_5$ is triclinic. High temperature X-ray diffraction measurements have been carried out to characterize a series of compositions along the binary joins between room temperature and 773 K. Structural phase transitions are identified based on the determination of spontaneous strain associated with them.

In CaZrGeO₅ a phase transition from the low temperature triclinic structure to a monoclinic structure with A2/a-symmetry occurs at approximately 493 K. The transition P2₁/a – A2/a, which is typical for the CaTi(Ge_xSi_{1-x})O₅ and (Ca_xSr_{1-x})TiGeO₅ solid solutions, is not observable above ambient temperature for Zr-concentrations in excess of 10%. The addition of Zr apparently destabilizes the ordered P2₁/a phase. Thus the critical temperature drops from 588K in the end member composition CaTiGeO₅ to approximately 480K in the compound Ca(Ti_{0.95}Zr_{0.05})GeO₅.

Spontaneous strain associated with the P2₁/a – A2/a transition in CaTi(Ge_xSi_{1-x})O₅ has been used to estimate the order parameter evolution as a function of temperature. Near tricritical behaviour is observed for the endmember compositions and the compounds CaTi(Ge_{0.95}Si_{0.05})O₅ and CaTi(Ge_{0.1}Si_{0.9})O₅ whereas the intermediate compositions approach second-order behaviour.

The phase transition in SrTiGeO₅ occurs at 560 K with a linear increase of Tc towards the intermediate phase $(Ca_{0.5}Sr_{0.5})$ TiGeO₅. Between $(Ca_{0.5}Sr_{0.5})$ TiGeO₅ and the endmember composition CaTiGeO₅ Tc stays constant.