3.1.P10

Noble gases in natural CO₂ gas deposits: Identifying and quantifying natural CO₂ sequestration processes

 $\underline{Z. ZHOU}^1$, C.J. BALLENTINE², M. SCHOELL³ AND S. STEVENS⁴

¹ IGMR, ETH Zurich, Switzerland (zhou@erdw.ethz.ch)

² Department of Earth Sciences, The University of

Manchester, UK (chris.ballentine@man.ac.uk) ³ GasConsult International L.L.C., Danville, USA

⁴ Advanced Resources International, USA

Natural CO_2 gas reservoirs provide an important analogue for studying sequestration systems. Noble gases are used here to identify CO_2 source and quantify interaction with groundwater in a naturally occurring CO_2 gas field. 10 samples were taken from a CO_2 -rich natural gas reservoir in Jackson Dome, Mississippi, USA.

We present compositional, stable isotope and noble gas results of Jackson Dome samples. ³He/⁴He ratios are between 4.27 and 5.01Ra, indicating a strong mantle signature. Crustual radiogenic ⁴He increases locally with water-derived ²⁰Ne, suggesting that ⁴He is pre-mixed with the groundwater before contact with the CO2 gas phase. N2 concentrations also correlate with ²⁰Ne and appear to be sourced from the groundwater as well. ⁴⁰Ar/³⁶Ar ratios are all above air ratio, ranging between 4071 and 6420. Air corrected ⁴⁰Ar* vary between 92.7 and 95.4%, to give ⁴He/⁴⁰Ar^{*} ratios of between 1.26 and 2.52. This range is comparable with values estimated for the upper mantle. $CO_2/{}^{3}He$ values are between 1.09×10^{9} and 4.62×10^9 , and also fall in the mantle range, indicating that the CO₂ gas in Jackson Dome is also predominantly mantle in origin. A strong anti-correlation between ²⁰Ne and $CO_2/^3$ He, is indicative that groundwater plays the principle control in changing the $CO_2/^3$ He ratio. $CO_2/^3$ He ratios also correlate with $\delta^{13}C(CO_2)$. Water seems responsible for 25% CO₂ loss and ~1% change in δ^{13} C(CO₂).

Our results show that the first charge of CO_2 migrates through the groundwater filled sedimentary rock and fills the crest of the trapping structure (CO_2 ~98%, N_2 + CH_4 ~2%, high ²⁰Ne and ⁴He). Later charges of CO_2 migrate through the groundwater filled sedimentary rock to the trapping structure with pure CO_2 occupies the margins of the gas field (CO_2 ~99.3%, N_2 + CH_4 ~0.7%, low ²⁰Ne and ⁴He). There is little transfer of low-solubility gases from the water to the new CO_2 gas as these have already been "stripped out" of the water phase. From ²⁰Ne we calculate the minimum volume of water responsible for removing CO_2 from the gas phase to be 1.05×10^9 m³. This quantifies for the first time the importance of the groundwater system in CO_2 gas sequestration.

3.1.P11

Monte Carlo simulation of the hydration of Na-, Ca-, and Kmontmorillonite at 353 K and 625 bar

L. DE PABLO¹ AND M.L. $CHAVEZ^2$

 ¹ Instituto de Geologia, Universidad Nacional A. de Mexico, Mexico D.F., Mexico (liberto@servidor.unam.mx)
² Facultad de Quimica, Universidad Nacional A. de Mexico, Mexico D. F., Mexico (marilu@servidor.unam.mx)

The hydration of Wyoming-type Na-, Ca-, and Kmontmorillonite is studied at oil-reservoir conditions of 353 K and 625 bar and compared with hydration at the surface ambient conditions, by Monte Carlo simulations in the NP_{zz}T and grand canonical µVT ensembles. Our results indicate that in the reservoir environment, Na-montmorillonite forms a stable one-layer hydrate of d₀₀₁ spacing 12.72 Å, 53 water molecules adsorbed, density 0.32 g/ml, internal energy -7.64 kcal/mol, six water molecules coordinated per sodium atom at a separation of 2.30-2.33 Å. Ca-montmorillonite develops a nearly stable one-layer hydrate of 12.50 Å spacing with 55 water molecules adsorbed, density 0.34 g/ml, energy -21.12 kcal/mol. K-montmorillonite could form a nearly stable onelayer hydrate of 12.75 Å spacing, 60 water molecules adsorbed, density 0.365 g/ml, energy -22.73 kcal/mol, coordination six. In the three cases, the water molecules cluster in a broad band about the interlayer mid-plane, with protons on both sides and on the mid-plane and the cations in positions intermediate to the water protons and oxygens, but in K-montmorillonite some K⁺ ions remain in inner-sphere complexes with the siloxane oxygens. The two- and threelayer hydrates common under the surface environment of 1 bar and 300 K are not stable at the reservoir conditions of 625 bar and 353 K. Ca- and K-montmorillonite monolater hydrates would only be stable at lower depths, in environments less stringent than 353 K and 625 bar; with increasing depth, the coordination of cations decreases and the displacement of water towards the bulk is favored. The force-field employed in this work has been shown to reproduce many of the experimental features of montmorillonite hydrates under ambient conditions; while predictions at higher temperatures and pressures are reasonable, it would be desirable to conduct proper experiments.