Abiotic transformation of perchloroethylene by manganese oxide

MARCOS A. CHENEY*, LAUREN ROBINSON, JEROME J. KUKOR

Department of Environmental Science, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 [cheney@aesop.rutgers.edu]

Perchloroethylene (PCE) is an important contaminant of world soil, air, and water systems with effects on aquatic life and humans. Thus, its reactivity with soil minerals is an important issue. Batch experiments were performed to examine the synergistic effect of sorbed hexanes on the degradation of PCE by MnO₂. The amount of PCE adsorption on the surface of synthetic hydrous (10% water) MnO₂ was estimated from the rapid initial loss of PCE from the headspace. Analysis of head space gases was by GC-FID and GC. In the absence of hexanes, no reaction was observed, however in the presence of hexanes, a reaction took place at ambient temperature. The products are mainly methane, ethylene, vinyl chloride and CO₂, all in trace amounts. PCE disappearance is rapid ($t_{1/2}$ ~10 min at 30°C), independent of whether O_2 is present or not. The reactivity depended on both the amount of hexanes present and MnO₂. The activation energy of the reaction was measured to be 16.04 KJ mol⁻¹, low enough to indicate that the reaction might be diffusion controlled. Manganese oxide reduction is a minor reaction, and the hexane appears be consumed in the process. The reaction by PCE with MnO₂ proceeds via a redox mechanism that is currently under investigation. Thus, synthetic crystalline MnO₂, which is similar in structure to a common soil constituent, is found to promote degradation of PCE at 30°C, via possibly a redox mechanism. Furthermost, the reaction shows degradation under ambient environmental conditions. We are currently fine tuning the catalyst (by surface engineering) to increase product yield and provide the basic data necessary to develop new strategies for abiotic remediation of PCE-contaminated soil and sediments.

CH_4 emission, production and their $\delta^{13}C$ values in submerged rice soil as influenced by elevated atmospheric CO_2 concentration

WEIGUO CHENG¹, KAZUYUKI YAGI¹, HUA XU², HIDEMITSU SAKAI³ AND KAZUHIKO KOBAYASHI³

¹Greenhouse Gas Emission Team, National Institute for Agro-Environmental Sciences, Tsukuba, Japan (cheng@niaes.affrc.go.jp; kyagi@affrc.go.jp)

²Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, China (hxu@issas.ac.cn)

³Atmospheric Impacts Unit, National Institute for Agro-Environmental Sciences, Tsukuba, Japan (sakai@niaes.affrc.go.jp; clasman@niaes.affrc.go.jp)

An experiment was carried out in six controlledenvironment chambers to study the effects of elevated CO₂ on CH₄ emission from a submerged rice soil. In three chambers, CO₂ concentration was maintained at 350 µmol mol⁻¹ (ambient CO₂), while in another three, CO₂ was controlled at 650 µmol mol⁻¹ (elevated CO₂) throughout a rice growing season from May 15 to September 30, 2002. At the tiller, panicle formation and early grain filling rice growth stages, 413‰ δ^{13} C-CO₂ was fed to all chambers for each 3 days. The samples of plant, soil, soil solution, emitted CH₄ and dissolved CH₄ and CO₂ in flooding water and soil solution were sampled before and after the feeding. The δ^{13} C values of all samples were measured by an IRMS (MAT 252, ThermoFinnigan) interfaced with GC-C (HP 5890), PreCon/GC-C and EA (EA1108, Fisons).

Elevated CO₂ significantly decreased CH₄ concentration in the submerged paddy soil during early rice growth stage (from June to July) where the most CH₄ originated in soil organic matter and applied rice straw. However, elevated CO₂ increased CH₄ concentration in the soil and CH₄ emission to the atmosphere during the later rice growth stage (from August to September) where the most CH₄ originated in rice. Elevated CO₂ increased bubble volume in the submerged paddy soil, the concentration and amount of CH₄ also increased by elevated CO₂. The changes in δ^{13} C values between before and after 413‰ δ^{13} C-CO₂ feeding indicated that rice roots exudates are the dominant substrate for CH₄ production in the submerged rice soil.

The increase in CH₄ emission by elevated CO₂ was significant during later rice growth stage, regardless of transport pathways, either plant mediated or ebullition-diffusion, in the pot experiment. The CH₄ dissolved in flooding and soil solution also showed same trend with CH₄ emission. The emitted CH₄ by ebullition-diffusion accounted for 7.5 and 6.7 % of total emission under ambient and elevated CO₂ conditions respectively. The results of enriched ¹³C-CO₂ feeding indicated that a large proportion of emitted CH₄ was supplied from plant exudates in the case without rice straw application.