The dissolved N₂O in two small karst lakes in southwest China

S.L. WANG, C.Q. LIU, F.X. TAO, G.J. WAN, J. LI, Z.Z. ZHU AND W. YANG

The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, slwang@mail.gyig.ac.cn

The dissolved N₂O was investigated in Lake Hongfeng and Baihua, two small reservoirs constructed in carbonate area in southwest China in 1960 and 1968 respectively, in the fall of 2002. In the center and near the dam of Lake Hongfeng, the depositing organic matter produced by photosynthesis in the epilimnia was decomposed in the thermocline. Therefore pH, DO and SO₄²⁻ decreased and occurred negative peaks, and CH_4 , CO_2 emerged the positive peaks there. N₂O had the maximum in the oxic epilimnia, gradually decreased in the thermocline, and kept stable in the hypolimnia in the center of lake. Comparatively, N₂O had two peaks at the depths of 14 and 25 meters near the dam. It could be found that DO of two peaks was equal to 2.6mg/L and SO₄²⁻ to 55mg/L. Obviously N₂O production in surface water was relative to the growth of algae. N_2O in the deep water is from the nitrification. The denitrification region could be formatted in the thermocline due to the decomposition of organic matter, and resulted in two peaks at the transitional zone of nitrification and denitrification.

In the center of lake and near dam of Lake Baihua, there were maxima of N₂O at the depth of 16 meters. ΔN_2O was linear relative to the AOU over the peak, suggesting N₂O was produced by the nitrification. N₂O rapidly decreased and became to be under-saturated under the peak, which indicated N₂O was consumed by denitrification. Therefore the peak of N₂O was regarded as a boundary of nitrification and denitrification. Over the boundary NO_3^{-} , SO_4^{-2} was very high, and rapidly decreased and NO2-,CH4 increased under the boundary. However the large changes of DO and CO₂ occurred at the depth of 8 meters. The boundary of nitrification and denitrification did not recorspond to the oxicanoxic interface. Maybe N₂O was partially produced during the oxidization of NH_4^+ by the methanotroph microorganism. The concentration of N₂O was gradually increasing from the surface to the deep water in the mouth of the inflow river of Lake Hongfeng and Baihua. In summary, the dynamic condition of water and the character of particle organic matter had great effects to the distribution of N₂O.

Lake Hongfeng is just 5 kilometers far on the upstream of Lake Baihua. Both belong to mesotro-eutrophic lake. However, the flux of N_2O in Lake Hongfeng, $26.3\pm16.7\mu$ mol m⁻².day⁻¹, was much larger than that in Lake Baihua, $1.5\pm1.4\mu$ mol m⁻².day⁻¹. One of reasons was that the source of N_2O in surface water in Lake Hongfeng was relative to the growth of algae, but the N_2O in Lake Baihua was mainly produced by nitrification and the concentration of N_2O was very low.

Gas-chemical compositions of mantlederived rocks and their redox characteristics

X.B. WANG, X. LI ZH, M.J. ZHANG, X.R. YE AND H. YAN

Lanzhou Institute of Geology, CAS, Lanzhou, 730000, China (xbwang@ns.lzb.ac.cn)

Generally, the relationship between multivalent elements (Fe²⁺/Fe³⁺) and the oxygen fugacity of mineral assemblages of mantle-derived rocks can be used to identify the redox characteristics of the mantle, the conclusion drawn from which is that "the oxidation of the mantle is so strong that the mantle fluid is predominated by CO₂ and H₂O in composition". A study on the gas geochemistry of Cenozoic mantle-derived inclusions from East China has shown that there exist two different redox mantle source areas, one is a strongly reducing area with reduced gases (such as H_2 , CH_4 , CO and H_2S) amounting to 60~90% and the other is a strongly oxidizing area with some oxidized gases (CO₂, SO₂) to 60~80% because of the reaction between the crust and mantle. The stepwiseheating mass spectrometer analysis on some single minerals (olivine, enstenite and clinopyroxene) of mantle-derived rocks indicates that at low-temperature stage (30~600°C) the gas is mainly composed of oxidized gases while at high-temperature stage (700~1100°C) the released gas is predominated by reduced gases. When the temperature increases to 900~1140°C, the concentration of H_2 is as high as 80~90%. The above study may be helpful to explore the chemical compositions and the evolution of the original undifferentiated mantle fluid.

References

- Blundy, J.D., Brodholf, J.P. and Wood, B.T., 1991. *Nature*, 349, 321-324.
- 2. Eggler, D.H., 1983. Geophys. Res. Lett., 10, 365-368.