The effect of sulfate sulfur on the structure of Na₂O-SiO₂ glasses: A ²⁹Si MAS NMR, Raman and FT-IR study

T. TSUJIMURA, X. XUE, M.J. WALTER, S. YAMASHITA, AND M. KANZAKI

Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori 682-0193, Japan, sulfur@misasa.okayama-u.ac.jp

Sulfate in silicate melts plays an important role in not only volcanology but also ceramics. Here we report the relation between silicate network structure and sulfate for sodium silicate glasses (quenched melts) from ²⁹Si MAS NMR, Raman and IR studies. Sulfate-bearing glasses were prepared from mixtures of Na₂O·xSiO₂ glasses (x = 1.5, 2, 3) and Na₂SO₄ at 1300°C and 2 kbar over 8 hours in an IHPV. The ²⁹Si MAS NMR, Raman and IR spectra of the sulfate-free glasses are consistent with those reported previously.

For all the sulfate-bearing glasses, a new peak near 980cm^{-1} in the Raman spectra appears and grows systematically with increasing Na_2SO_4 content. This peak can be attributed to the S-O stretching mode of $\text{SO}_4^{2^\circ}$, confirming that Na_2SO_4 species is present in the melt.

For the $Na_2O \cdot 1.5SiO_2$ composition, the ²⁹Si MAS NMR spectra indicate that the abundance of Q^2 in the sulfate-bearing glass is higher than that in the sulfate-free glass. The Raman spectra also reveal an increase in the relative height of the 945cm⁻¹(Q^2) to 1080cm⁻¹(Q^3) peak, consistent with the ²⁹Si MAS NMR result. For the $Na_2O \cdot x SiO_2$ (x = 2, 3) compositions, the ²⁹Si MAS NMR spectra indicate that the abundances of Q⁴ in the sulfate-bearing glasses of different Na₂SO₄ contents are all similar, but lower than those of the sulfate-free glasses. The Raman spectra show only small changes in the relative intensities of Q² to Q³, and little change near 1150cm⁻¹ between the sulfate-bearing and free glasses; the assignment of the latter to Q^4 has been controversial. Thus, these data suggest that the melt structure becomes less polymerized upon Na₂SO₄ addition, possibly as a result of partial decomposition of the added Na₂SO₄ to Na₂O and SO₃.

In summary, our study suggests that sulfate largely dissolves in sodium silicate melts as Na_2SO_4 species, although some decomposes to depolymerize the melt structure.

XAFS study on trace amount of ytterbium ions incorporated in calcite and aragonite

H. TSUNO¹, H. KAGI², T. YOSHIDA², Y. TAKAHASHI³, A. OHTA⁴, T. AKAGI⁵, AND M. NOMURA⁶

¹Institute for Environmental Management Technology, AIST, Tsukuba 305-8569, Japan (h.tsuno@aist.go.jp)

²Laboratory for Earthquake Chemistry, The University of Tokyo, Tokyo 113-0033, Japan

³Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan

⁴Geological Survey of Japan, AIST, Tsukuba, Japan

⁵Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan

⁶Photon Factory, KEK, Tsukuba 305-0801, Japan

Trace amount of rare earth elements (REEs) induces significant effects on the crystal growth and dissolution of calcium carbonate. The substantial increase in the solubility of $CaCO_3$, the stabilization of the vaterite and the inhibition of calcite growth were caused by the addition of trace amount of lanthanum into the aqueous solutions (Tsuno et al., 2001, 2002; Kamiya et al., 2001). The uptake mechanism and chemical state of REEs incorporated into calcium carbonate are unclear. X-ray absorption fine structure (XAFS) in a fluorescence mode is practically the only method for the structural characterization of trace elements in the solid materials. In the present work, we investigated the chemical species and local structure of ytterbium (Yb) incorporated in calciue.

Calcite was precipitated from a mixed solution of 30 mM $CaCl_2$ aq and 30 mM $NaHCO_3$ aq with a given amount of $YbCl_3$. Concentrations of Yb were 5 μ M in the starting solutions. Aragonite was synthesized by adding 25 mM $MgCl_2$ into the solution as mentioned above (Kitano et al., 1962). Yb L_{III} XAFS spectra were collected in the fluorescence mode at the beamline BL-12C of the KEK-PF.

According to the XAFS results of Yb in calcite, approximately 15% Yb ion existed as divalent in the calcite, although Yb ion was trivalent in the starting solutions (Tsuno et al. 2003). Furthermore the local structure around Yb³⁺, major Yb species in the calcite, is significantly different from that of Ca²⁺. The coordination number of Ca ion for calcite is 6. In contrast, the nearest Yb-O coordination for Yb-doped calcite is split into two shells, the nearest 4 oxygen atoms and the second nearest 2 oxygen atoms. It was shown that localized structural relaxation occurred around Yb³⁺ which has an ionic radius smaller than Ca²⁺. XAFS results of Yb in aragonite will be presented.

References

Tsuno H. et al. (2001) *Bull. Chem. Soc. Jpn.*, **74**, 479-486. Kamiya N. et al. (2002) *Chem. Lett.*, **2002**, 890-891. Tsuno H. et al. (2002) *Chem. Lett.*, **2002**, 960-961. Kitano Y. et al. (1962) *J. Geophys. Res.*, **67**, 4873-4874. Tsuno H. et al. (2003) *Chem. Lett.*, **32**, 500-501.