The data mining and knowledge discovery from databases paradigm in environmental research: How far can it get you?

E.N. Bui ${ }^{1}$, B.L. Henderson ${ }^{2}$ and C.J. moran ${ }^{3}$
${ }^{\text {' }}$ CSIRO Land and Water, GPO Box 1666, Canberra, ACT
2601, Australia. Elisabeth.Bui@csiro.au
${ }^{2}$ CSIRO Mathematical and Information Sciences, GPO Box 664, Canberra, ACT 2601, Australia.
Brent.Henderson@csiro.au
${ }^{3}$ CSIRO Land and Water, GPO Box 1666, Canberra, ACT
2601, Australia. Chris.Moran@csiro.au

Data mining is used to uncover patterns and relationships in very large financial, census, remote sensing, medical imaging databases ...and to rapidly extract useful knowledge from them. The term "data mining" has arisen from the artificial intelligence, machine learning, and pattern recognition literature; it is often referred to as "data mining and knowledge discovery in databases" or DM \& KDD.
A DM\&KDD paradigm has been used to construct Australiawide soil property predictions from a national soils database. The database includes over 160,000 soil profile descriptions and associated laboratory analyses (point database); a compilation of soil and land resources maps and other relevant datasets (lithology, digital elevation model and derived terrain attributes, climate surfaces, Landsat MSS imagery). The point data have been collected by many people, at multiple locations and times, and are sometimes incomplete. The soil properties predicted spatially include pH , organic carbon, total phosphorus, total nitrogen, thickness, texture and clay content. Models are constructed at the 250 m resolution using decision trees. These relate the soil property to the environment through a suite of 250 m resolution environmental predictors at the locations where measurements are observed. These models are then used to extend predictions to the continental extent by applying the rules derived to the exhaustively available environmental predictors. The methodology and performance will be described in detail for pH and summarized for other properties. Environmental variables are found to be important predictors, even at the 250 m resolution at which they are available here as they can describe the broad changes in soil property.

The behaviour of the titanite $\mathbf{U}-\mathbf{P b}$ system during polymetamorphism: Evidence from the Harts Range Complex, Arunta Inlier, central Australia

I.S. BUICK ${ }^{1}$ AND I.S. WILLIAMS ${ }^{2}$
${ }^{1}$ Department of Earth Sciences, La Trobe University, Bundoora, VIC 3086, Australia I.Buick @latrobe.edu.au ${ }^{2}$ Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia
Ian.Williams@anu.edu.au
Metabasites from the Harts Range Complex were metamorphosed to granulite grade ($\sim 8-10 \mathrm{kbar} ; \sim 800-850{ }^{\circ} \mathrm{C}$) at $\sim 470 \mathrm{Ma}$ (SHRIMP U/Pb zircon; Grt $\mathrm{Sm} / \mathrm{Nd}$) and subsequently variably reworked during the amphibolite-grade $\sim 440-300$ Ma Alice Springs Orogeny (ASO). Metabasites contain porphyroclasts of $\mathrm{Hbd}+\mathrm{Grt}+\mathrm{Cpx}+\mathrm{Ilm}+$ Tit within a matrix of high-temperature recrystallised $\mathrm{Pl}+\mathrm{Qtz}$. Dense systems of healed fluid inclusion trails and Act $\mathrm{Hbd} \pm \mathrm{Chl}$ fractures cut the garnet at a high angle to the granulite-grade fabric. High-temperature microstructures are locally reworked by shear bands containing Ep-Act Hbd \pm Chl that formed during the ASO.

Titanite from two metabasites dated as grain mounts both gave pooled SHRIMP ${ }^{238} \mathrm{U}-{ }^{206} \mathrm{~Pb}$ ages of $\sim 420 \mathrm{Ma}$. Additionally, one yielded a second pooled ${ }^{238} \mathrm{U}-{ }^{206} \mathrm{~Pb}$ age of $\sim 385 \mathrm{Ma}$. Neither contained a $\sim 470 \mathrm{Ma}$ Tit population even though titanite was commonly included within refractory garnet. SHRIMP U-Pb Tit dating in thin section from the metabasite having the two age populations shows the following: 1) individual Tit U-Pb spot ages vary from ~ 480 to $\sim 320 \mathrm{Ma} ; 2$) the oldest spot ages ($\sim 480-460 \mathrm{Ma}$) are only rarely preserved, even in inclusions in the cores of $1-2 \mathrm{~cm}$ diameter garnets; 3) Tit inclusions from positions intermediate between the cores and rims of fractured garnet yield apparent $\mathrm{U}-\mathrm{Pb}$ ages of $\sim 435-415 \mathrm{Ma}$; younger ages ($\sim 410-390 \mathrm{Ma}$) occur in more highly fractured garnet rims; 4) oriented elongate Tit grains in the external mylonitic matrix generally yield ages of $\sim 380-390 \mathrm{Ma}$; 5) some Tit grains are composite, containing irregular domains that yield c. 430 and $\sim 390 \mathrm{Ma}$ ages; 6) $\sim 360-340$ Ma ages come from narrow Tit rims on Ilm cores within narrow, ASO shear bands; 7) dense networks of Tit-filled fractures cutting $\sim 350 \mathrm{Ma}$ Tit yield the youngest age, $\sim 320 \mathrm{Ma}$.

The range of apparent in situ titanite $\mathrm{U}-\mathrm{Pb}$ ages reflects its initial occurrence as part of the peak-metamorphic $\sim 470 \mathrm{Ma}$ granulite assemblage; several episodes of partial resetting of the Tit $\mathrm{U}-\mathrm{Pb}$ system, which may have been facilitated by fluidassisted mass transfer along dense fracture networks in the garnet prophyroclasts during polyphase shearing; and new ASO-related growth. Signficantly, during ASO deformation garnet provided little protection for included titanite from resetting of its $\mathrm{U}-\mathrm{Pb}$ system.

