¹⁴C and ¹⁰Be in cosmic dust magnetite

```
A. J. T. JULL<sup>1</sup>, D. LAL<sup>2</sup>, L. R. MCHARGUE<sup>1</sup>, L.VACHER<sup>2</sup>,
S. TAYLOR<sup>3</sup> AND M. MAURETTE<sup>4</sup>
```

- ¹NSF Arizona AMS Laboratory, Univ. of Arizona, Tucson, AZ 85721 USA.
- ²Scripps Institution of Oceanography, Univ. of California, La Jolla, CA 92093-0224, USA.
- ³Cold Regions Research & Engineering Laboratory, Hanover, NH 03755, USA

⁴CSNSM, IN2P3, Bât. 108, 91405 Orsay, France.

We studied ¹⁴C and ¹⁰Be in magnetic separates from particulates recovered from the South Pole Water Well (SPWW) (Taylor et al., 2000) and from blue ice at Cap Prud'homme (CP), Antarctica by Maurette et al (1991). Previous studies on radionuclides (¹⁰Be and ²⁶Al) in cosmic dust were performed on single spherules from marine sediments and ice (e.g. Raisbeck and Yiou, 1987; Nishiizumi et al., 1987).

We obtained ${\rm ^{14}C}$ samples by combustion in O_2 at a series of temperatures. Independently, samples were subjected to an acid-etching procedure where both ¹⁴C and ¹⁰Be samples were recovered. CO₂ was converted to graphite for AMS measurements. The combustion results show an interesting trend of high ¹⁴C release in the 200-400°C fraction. Levels of 11.4±0.8 and 43.5±0.4 dpm/kg ¹⁴C were observed in hightemperature (>550°C) fractions, for SPWW and CP respectively. Acid-etch samples indicated a total of 13±1 and 98±1 dpm ¹⁴C/kg for SPWW and CP. The acid-etch results sample a different component of carbon that the combustion experiments. We also measured low levels of ¹⁰Be in the same acid-etched fractions. These results are consistent with spallogenic ¹⁴C (due to SCR and GCR). The ¹⁰Be results suggest that most of magnetic fraction is extra-terrestrial and that the cosmogenic nuclides are not likely surface-correlated; they also indicate low GCR exposure times. The ¹⁴C results on the other hand, suggest that the material was subject to substantial SCR and GCR irradiation during the last 20,000yr. Definitive conclusions about the nature of irradiation can be reached after we have information on ³He concentrations in the samples; work is in progress. These results open up a new area for the study of extraterrestrial material in terrestrial reservoirs. The magnetic component is likely more resistant to weathering and can be easily separated from terrestrial components.

References

Maurette M. et al. (1991) *Nature*, 351, 44-47.
Nishiizumi K. et al. (1991) *EPSL*, 104, 315-324. Raisbeck G. M. and Yiou F. (1987) *Meteoritics*, 22, 485-486.
Taylor S. et al. (2000) *Meteorit. Planet. Sci.* 35, 651-666.