Natural ³²Si as environmental tracer

U. MORGENSTERN

Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand (U.Morgenstern@gns.cri.nz)

There is a pressing need for an effective dating tool to cover the historical past. Cosmogenic ³²Si, with a half-life of ca. 140 years, is ideally suited to provide time information in the range 50-1000 years. Detection of ³²Si is, however, very difficult due to extremely low natural concentrations and isotopic ratios. The difficulties of setting up extremely low background systems, and the need for large samples have previously deterred wider use of ³²Si. At GNS we have developed improved methods for radiometric detection of natural ³²Si [Morgenstern et al., 2001] and, in collaboration with Australian National University, have succeeded in measuring natural ³²Si by accelerator mass spectrometry (AMS) [Morgenstern et al., 2000]. For AMS the necessary sample size can be reduced by a factor of ca. 1000, making it suitable for analysing ice core samples of only ca. 1 kg.

The global distribution of ³²Si was poorly known for a long time. However, assessment of all published Northern Hemisphere ³²Si precipitation data, and comparison with recent data from New Zealand shows that ³²Si exhibits similar latitude and seasonal variation to other well-investigated cosmogenic radionuclides. Compared with Northern Hemisphere data, ³²Si concentrations in rain water from Kaitoke (near Wellington) are about a factor two higher, and in snow from NZ glaciers are higher by a factor of 5.

³²Si has been considered as a tool for groundwater dating since its first detection. In a number of studies, the conservative behaviour of ³²Si as a tracer has been questioned, but some promising results have also been obtained, including the detection of ³²Si in ground waters with mean residence times of some hundreds of years, and a regularly decreasing ³²Si concentration with aquifer depth. To test ³²Si as a tracer suitable for dating groundwaters, we measured ³²Si in a young river-recharged confined gravel aquifer system with wellestablished ages from tritium dating. We found that ³²Si is nearly lost from the groundwater after 20 years. However, previous results do indicate that ³²Si behaves conservatively in sandstone aquifers.

We have also applied ³²Si measurements to a sediment core from the Bangladesh continental shelf and were able to establish a chronology beyond other dating methods [Morgenstern et al., 2001]. This suggested a relatively constant sedimentation rate from 50 to 400 years, and a significantly increased sedimentation rate over the past fifty years.

Projects for dating deep ocean glass sponges and glacier ice cores via AMS measurement of ³²Si are underway.

References

Morgenstern U., Fifield L.K., Zondervan A., (2000), Nucl. Inst. Meth. B 172:605-609.

Morgenstern, U., Geyh M.A., Kudrass, H.R., Ditchburn R.G. and Graham I.J. (2001) RADIOCARBON, Vol 43, Nr 2B, 909-916

XAS monitoring of Arsenic (Bio-)Oxidation and Immobilisatio in Soils and Acid Mine Drainage.

Morin G¹., Juillot F¹., Allard T.¹, Casiot C.³ Elbaz-Poulichet F.³, Ildefonse Ph.^{1†}, Calas G.¹

 ¹Laboratoire de Minéralogie Cristallographie de Paris - UMR 7590 - CNRS – Universités Paris 6&7 – IPGP - Paris, France, Guillaume.Morin@lmcp.jussieu.fr
 ³Hydrosciences, Université Montpellier II, France,

Francoise.Elbaz@msem.univ-montp2.fr [†]Deceased 26 october 1999

Arsenic contamination of waters, sediments and soils, from both natural and anthropogenic sources, represents potential risks for water quality and food chain. Mobility and bio-availability of this toxic contaminant are controlled by its oxidation state and by solid/solution interactions that can be monitored in situ by X-ray Absorption Spectroscopy (XAS).

We studied the molecular-scale mechanisms of arsenic retention in soils and Acid Mine Drainage (AMD), at several field sites chosen by French and European Community research programs to evaluate the risks related to arsenic contamination [1-4]. Particular attention was paid in assessing the role of micro-organisms in controlling arsenic speciation.

In the natural and polluted soils studied, XAS analyses indicate that, after crystalline As-bearing species have dissolved, arsenic immobilisation is mainly achieved by complexation onto iron oxy-hydroxide mineral surfaces [2].

In heavily contaminated AMD studied, microbial oxidation of Fe(II) and the subsequent co-precipitation of arsenic with crystalline and amorphous ferric oxy-hydroxide mineral phases is the dominant process. XAS data show that the oxidation state of arsenic in these precipitates is controlled by seasonal variations of the activity of bacteria able to oxidise As(III) [3-4].

- 1-Juillot F., Ildefonse Ph., Morin G., Calas G., De Kersabiec
 A.M. and Benedetti M. *Applied Geochemistry* 8, 1031-1048 (1999)
- 2-Morin G., Lecocq D., Juillot F., Ildefonse Ph., Calas Bull. Soc. Géol. Fr. (in press)
- 3-Morin G., Juillot F., Casiot C., Bruneel O., Personné J-C., Elbaz-Poulichet F., Leblanc M., Ildefonse P. and Calas G. (Submitted to *Environ. Sci. Technol.*)
- 4-Casiot C., Morin G., juillot F., Bruneel O., Personné J-C., Leblanc M., Duquesne K., Bonnefoy V., Elbaz-Poulichet F. (Submitted to *Environ. Sci. Technol.*).