Martian xenology

B. MARTY^{1,2}, K.J. MATHEW² AND K. MARTI²

¹ CRPG-CNRS, BP 20, 54501 Vandoeuvre Cedex France bmarty@crpg.cnrs-nancy.fr

² Dept. Chemistry & Biochemistry, UCSD, CA 92093-0317, USA mkattah@ucsd.edu & kmarti@ucsd.edu

The SNC meteorites Chassigny, ALH84001, Nakhla and the newly discovered nakhlite NWA817 and shergottites NWA480, NWA856, NWA1068 contain xenon produced by the fission of the extinct radionuclide ²⁴⁴Pu ($T_{1/2}$ = 82 Ma). The fission gas correlates with indigenous solar-type Xe, a Maritian interior component. Nakhlites and shergottites are enriched (relative to chondrites) in U, REE, and fissiogenic ¹³⁶Xe*, demonstrating enrichments through magmatic differentiation in closed system condition. This implies that the parent magmas did not cool down close to the surface as proposed.

The ratios (¹²⁹Xe/¹³⁶Xe)*, where ¹²⁹Xe* is decay product of extinct ¹²⁹I – ($T_{1/2} = 16$ Ma), observed in high temperature fractions are systematically lower than expected from decay in a closed Martian mantle. The low I/Pu ratio of SNC requires early differentiation of volatile iodine with respect to refractory plutonium \leq 35 Ma after start of solar system formation, which may represent the time of mantleatmosphere differentiation. The computed amount of mantle Xe released into the early Martian atmosphere is ~3 orders of magnitude higher than the Xe abundance observed in the present-day atmosphere, as is the amount of ¹²⁹Xe* produced by the decay of ¹²⁹I transferred to the Martian surface, implying drastic loss of Martian atmospheric gases over several tens of Ma.

Martian "xenology" strongly suggests that mantle-crustatmosphere evolution was earlier than that of Earth and that Mars has been a static planet for most of its history after these early episodes.

Parental magmas and crustal contamination of tholeiitic basalts as revealed by mineral major and trace element compositions

A. MARZOLI¹, F. BUSSY² AND F. JOURDAN³

¹Section des Sciences de la Terre, Université de Genève, Switzerland (Marzoli@terre.unige.ch)

² Institute of Mineralogy and Geochemistry, Université de Lausanne, Switzerland (Bussy@img.unil.ch)

³Geosciences Azur, Université de Nice-Sophia Antipolis, France (Jourdan@unice.fr)

The Kerforne tholeiitic basalts (France, northernmost Central Atlantic magmatic province) are augite and plagioclase phyric dolerites. They have evolved compositions (MgO 7-9 wt. %), moderately enriched REE patterns, positive $_sr$ (+ 15 to +22), and $__{Nd}$ close to 0. Optically homogeneous, large augite phenocrysts (Wo = 42-35) are characterized by high-MgO (Mg# = 85-82), high Cr₂O₃ cores (up to 0.6 wt. %) with depleted light vs. heavy REE patterns (laser ablation ICP-MS data). Augite cores probably crystallized from little evolved magmas, and suggest that primitive Kerforne tholeiites had almost flat REE patterns.

Plagioclase phenocrysts are characterized by high-An (An₈₅) rounded, resorbed cores, which are MgO-rich (~0.25-0.30 wt. %), La and Ce and particularly Y- poor. Textures and chemical compositions suggest that the high-An cores were not in equilibrium with the basaltic host-rock, but are probably xenocrysts inherited from a heavy REE depleted crustal gabbro.

In this scenario, the differentiation of Kerforne basalts is modelled starting from a parental magma calculated from augite core compositions, which undergoes fractional crystallization and assimilates a crustal melt calculated from plagioclase core compositions.