Fate of prebiotic adenine

THOMAS K. HANSSON, COREY A. COHN, HÅKAN S. LARSSON, STEPHEN J. SOWERBY, AND NILS G. HOLM

thomas.hansson@geo.su.se nils.holm@geo.su.se

Equilibrum adsorption isotherm data for the purine base adenine has been obtained on several prebiotically relevant minerals by frontal anaysis using water as a mobile phase. Adenine is far displaced toward adsorption on pyrite (FeS₂), quartz (SiO₂) and pyrrhotite (FeS), but somewhat less for magnetite (Fe₃O₄) and forsterite (Mg₂SiO₄). The prebiotic prevalence of these minerals would have allowed them to act as sink for adenine; removal from the aqueous phase would confer protection from hydrolysis as well, establishing a nonequilibrium thermodynamic framework for increased adenine synthesis. Our results provide evidence that adsorption phenomna may have been critical for the primordial genetic architecture.

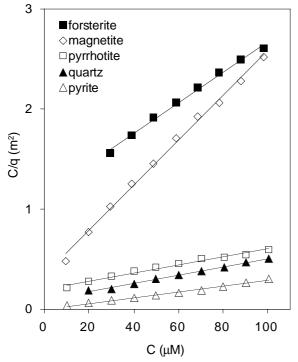


Fig. 1. Langmuir plots for adenine adsorbed to pyrite, pyrrhotite, magnetite, forsterite and quartz at 30°C. The slope is in inverse proportion to the theoretical limit of adsorbed solute.

Rare gas and Sr-Nd-Pb-Hf isotope systematics of Deccan flood basalts

T. HANYU¹, T. J. DUNAI², G. R. DAVIES², S. NAKAI³, I. KANEOKA³, T. FUJII³ AND T. SANO⁴

- ¹Institute for Frontier Research on Earth Evolution, Japan Marine Science and Technology Center, Yokosuka, Japan (hanyut@jamstec.go.jp)
- ²Faculteit der Aardwetenschappen, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (dunt@geo.vu.nl, davg@geo.vu.nl)
- ³Earthquake Research Institute, University of Tokyo, Bunkyoku, Tokyo, Japan (snakai@eri.u-tokyo.ac.jp, kaneoka@eri.u-tokyo.ac.jp, fujii@eri.u-tokyo.ac.jp)
- ⁴College of Environment and Disaster Research, Fuji Tokoha University, Fuji, Shizuoka, Japan (sano@fuji-tokohau.ac.jp)

Rare gas isotopes as well as Sr-Nd-Pb-Hf isotopes of samples from the Deccan flood basalt province are presented. Although high ³He/⁴He ratio up to 14 Ra has been reported for the early igneous event prior to main Deccan volcanism (Basu et al., 1993), nine clinopyroxene separates from the main Deccan province have relatively low ³He/⁴He. These samples can be divided into two groups according to their ³He/⁴He of the first crushing step; three samples have uniform ³He/⁴He between 3.2 and 3.5Ra (Group-A) and the others have 1.6Ra or less (Group-B). This grouping by ³He/⁴He is irrespective of major element composition or He concentration, but is related to age corrected Sr-Nd-Hf isotope ratios. Groups -A and -B define different data arrays in Sr-Nd and Sr-Hf isotope diagrams, in which both arrays trend towards the Ambenali Formation. In the Deccan Province, the Ambenali Formation has isotopic compositions most typical of depleted source. The early igneous event with a primitive He isotopic character presumably records direct melting of the starting plume (Basu et al., 1993). The isotopic correlations recorded by the main magmatic sequences, however, demonstrate that mixing of enriched components to a depleted upper mantle signature is the main control on the isotopic and trace element character of Deccan magmatism (e.g.; Peng et al., 1998). Group-A array suggests that the mixing endmember is enriched mantle that has a time-integrated ⁴He enrichment. Mixing such components produces large Nd and Hf isotope variations in contrast to uniform ³He/⁴He. On the other hand, the mixing endmember needed to explain the data of Group-B has a very low ³He/⁴He. Bulk assimilation of continental crust best explains the resulting trend toward enriched Sr-Nd-Pb-Hf isotope ratios and low ³He/⁴He.

References

- Basu A.R., Renne P.R., DasGupta D.K., Teichmann F. and Poreda R.J., (1993), *Science* **261**, 902-906.
- Peng Z.X., Mahoney J.J., Hooper P.R., Macdougall J.D. and Krishnamurthy P., (1998), J. Geophys. Res. 103, 29843-29864.