Ross Sea ²²⁶Ra and Ba profiles measured by MC-ICP-MS.

D.A.FOSTER, M.STAUBWASSER & G.M.HENDERSON

Dept of Earth Sciences, Oxford University, Parks Road OX1 3PR (deborah.foster@earth.ox.ac.uk)

The measurement of ²²⁶Ra in seawater has several potential applications in oceanography, particularly as a tracer of water masses and of groundwater input into the oceans (Moore, 1996). ²²⁶Ra/Ba also shows potential for dating marine carbonates, but the seawater ²²⁶Ra/Ba ratio must be known. The majority of work on ²²⁶Ra in seawater has used radio decay methods such as alpha scintillation, but the poor efficiencies of radiation counters limit the precision of these measurements to about 5% (Chung, 1980), and requires a sample size of at least 20 litres. Atom counting methods such as mass spectrometry significantly reduce these limitations-Thermal Ionisation Mass Spectrometry (TIMS) has a uncertainty < 2% and requires only 40ml. However, TIMS analysis is time consuming and can be subject to organic interferences. We have developed and tested the use of multiple ion counting ICP-MS to analyse ²²⁶Ra on seawater samples using a Nu instrument. We describe the potential and limitations of this approach and demonstrate that 2% (2_) uncertainty can be achieved on 120ml of seawater. Backgrounds across the Ra mass range are very low (<1cps) when using clean cones, but molecular interferences of ~100 cps appear on several masses if the cones are contaminated with Ba. This problem necessitates the chemical separation of Ra from Ba prior to analysis. Nevertheless, MC-ICP-MS is significantly less time consuming than TIMS.

Three water column profiles from the Ross Sea and Southern Ocean have been measured in order to assess the variability of 226 Ra/Ba in the Ross Sea and the open ocean. We measure a surface water 226 Ra concentration of 0.386 ± 0.014 fmol 226 Ra/kg in agreement with a value of 0.386 ± 0.0048 fmol 226 Ra/kg from the same sample analysed independently using TIMS. 226 Ra concentrations are relatively constant with depth, and are close to those in the open Southern Ocean measured at GEOSECS station 287 (Chung, 1980). Ross Sea 226 Ra/Ba ratios are also within error of those measured at station 287 ($4.9x10^{-9}$ mol/mol). This similarity indicated that there is minimal discharge of 226 Ra into the Ross Sea, either by surface weathering or by groundwater discharge – a reassuring result for the use of Ra/Ba dating of carbonates in the area.

References

Chung Y., Craig, H. (1980), Earth and Planetary Science Letters, 49, 267-292.

Moore W. S. (1996), Nature, 380, 612-614.

Experimental determination of the stability of aluminum-borate complexes in hydrothermal solutions

S. FOUQUET, B. TAGIROV, J. SCHOTT, J. C. HARRICHOURY AND J. ESCALIER

LMTG-CNRS, Toulouse, France (tagirov@lmtg.ups-tlse.fr)

Boric acid is an important component of granite-derived fluids and thermal waters whose concentration, as measured in fluid inclusions, may reach 30 Wt% (Peretyazhko et al., 2000). To check for the formation of Al-borate species, similar to aqueous Al-silicates, a series of experiments was performed including a ²⁷Al NMR spectroscopy study at 25°C, and gibbsite and boehmite solubility measurements from 50 to 200°C.²⁷Al spectra performed at pH=9 in Al-B solution with m(B)=0.02 show the presence of two peaks at 80.5 and 74.5 ppm which correspond to $Al(OH)_4^-$ and a single Al-substituted Q_{A1}^{1} dimer, respectively. When m(B)=0.02, a third peak appears at 69.5 ppm which can be assigned to the Q_{Al}^2 trimer. The observed chemical shifts are close to those of the Al-Si dimer and trimer (74 and 69.5 ppm, respectively; Pokrovski et al., 1998) which demonstrates the chemical similarity of Al-B and Al-Si complexes. Gibbsite and boehmite solubility was measured in weakly basic solutions as a function of boric acid concentration. Equilibrium solubility was reached within several days at m(B)=0.01-0.1, but Al concentration increased continuously at m(B)=0.2 due to the formation of Alpolyborates. The constant of the reaction Al(OH)₄+ $B(OH)_{3(aq)}^{0} = Al(OH)_{3}OB(OH)_{2}^{-} + H_{2}O$ decreases very slowly with increasing temperature to 200°C. The log K values deduced from the solubility measurements in $\leq 0.1 \text{ m H}_3 \text{BO}_3$ solutions are 1.58±0.10, 1.50±0.15, 1.50±0.20, and 1.25±0.10 at 50, 78, 150, and 200°C, respectively. These results demonstrate that in a solution containing ~0.5g/l of boron at 400°C and 0.5 kbar, Al(OH)₃OB(OH)₂ accounts for ~50% of total aluminum. At boron concentration >1g/l the formation of Al-polyborates may considerably increase aluminum transport capacity of hydrothermal fluids. This study was supported by CNRS and RFBR (grant 01-05-64675 to BT).

References

- Peretyazhko I.S., Prokof'ev V.Yu., Zagorskii V.E. and Smirnov S.Z. (2000), *Petrology* **8**, 214-237.
- Pokrovski G.S., Schott J., Salvi S., Gout R. and Kubicki J.D. (1998), *Min. Mag.* **62A**, 1194-1195.