Melting beneath the East Pacific Rise, 9°-10° N: Implications from Combined Nd-Hf-Sr-Th Isotopic Measurements

Kenneth W. Sims (ksims@whoi.edu)¹, Janne Blichert-Toft (jblicher@ens-lyon.fr)² & Mike Perfit (perf@nervm.nerdc.ufl.edu)³

¹ Dept. of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02536, USA

² Laboratoire des Sciences de la Terre (CNRS UMR 5570), Ecole Normale Supérieure de Lyon, 46, Allée

d'Italie, 69364 Lyon Cedex 7, France

³ Department of Geology, University of Florida, Gainesville, FL 32611, USA

Mid-ocean ridge basalts show significant excesses of ²³⁰Th over ²³⁸U. These ²³⁰Th excesses require that the mantle source retain U relative to Th during partial melting. Based on existing mineral-melt partitioning data which indicate that U is more compatible than Th in garnet, it is generally believed that these large ²³⁰Th excesses indicate melting in the presence of garnet. The extent to which this "garnet signature" represents melting of garnet peridotite versus garnet pyroxenite is an unresolved question in geochemistry which has important implications regarding the depth and dynamics of the melting process.

Interpretation of ²³⁰Th excesses in basalts is highly dependent on the bulk partition coefficients for U and Th and therefore the composition of the mantle source. Distinguishing between the effect of melting processes versus the effect of variable source compositions on measured ²³⁰Th excesses requires measurement of longer-lived radiogenic isotopes (e.g. Hf, Nd, Sr, and Pb). Here we report Hf, Nd and Sr isotopic measurements for a suite of 20 young MOR basalts from the East Pacific Rise (9°-10° N) which we have previously characterized in terms of ²³⁸U-²³⁰Th-²²⁶Ra and ²³⁵U-²³¹Pa disequilibria and major- and trace-element compositions. These samples were collected exclusively within the axial summit caldera trough, between 9° 30'N and 9° 52'N, by the submersible ALVIN, and their young ages (<100 yrs) are confirmed by observed field relations and by Po-Pb ages. ²³⁰Th excesses (1.10-1.19) and ²²⁶Ra excesses (2.01-2.92) are variable and inversely correlated. ²³¹Pa excesses are less variable (2.49-2.63) and positively correlated with ²³⁰Th excesses. ²²⁶Ra excesses are negatively correlated with Na₈, Fe₈, and La/Yb and positively correlated with Mg#, whereas ²³⁰Th excesses are positively correlated with Na₈, Fe₈ and La/Yb and negatively correlated with Mg#, Th/U (2.45-2.60) and ²³⁰Th/²³²Th (1.36 - 1.43) are also variable and correlated. Nd, Hf, and Sr isotope ratios are constant: $\varepsilon_{\rm Hf}$ ranges from 14.3-15.0; $\varepsilon_{\rm Nd}$ ranges from 10.2 - 10.7 and ⁸⁷Sr/⁸⁶Sr ranges from 0.70244 - 0.70257.

The constant Hf, Nd and Sr isotopic ratios measured in these samples indicate they were derived from a common source. This observation suggests that the measured variations of Th/U and ²³⁰Th excesses are best explained by polybaric melting of a homogeneous source and not the mixing of compositionally distinct sources. Thus, it is unlikely that garnet pyroxenite veins (which would have a distinct isotopic signature) have mixed with ambient peridotitic mantle to produce the compositional variability observed in these basalts.