²²⁶Ra/²³⁴U and ²³⁰Th/²³⁴U Dating of Holocene Corals and Speleothem

Jost Eikenberg (eikenberg@psi.ch)¹, Irene Zumsteg & Gernot Butterweck

¹ Paul Scherrer Institute, CH-5232 Villigen, Switzerland

Young Holocene Young quaternary corals from Mauritius Island (Indian Ocean) and freshwater travertine from Northern Switzerland were investigated by two chronometer dating using the ²³⁸U-series couples ²²⁶Ra_{ex}/²²⁶Ra(0) (excess decay) and ²³⁰Th/²³⁴U (ingrowth). Analyses of recently formed material showed for both types of samples that ²³⁰Th/²³⁴U started with insignificant inherited ²³⁰Th, (i.e. ²³⁰Th(0)=0). Additional analyses of the chemically to Ra similar behaving Ba suggested furthermore that the initially incorporated ²²⁶Ra_{ex} remained constant over the formation history of both systems (i.e. $^{226}Ra_{ex}(0) = const$). Mathematical analytical solutions of the coupled ²³⁴U/²³⁰Th/²²⁶Ra radionuclide system predicted that the ²²⁶Ra_{ex}/²²⁶Ra(0) chronometer is independent of the actual ²³⁰Th activity build up from decay of ²³⁴U, if the systems starts with zero inherited ²³⁰Th(0). The radiochemical analyses confirmed this hypothesis because the values for $^{226}Ra_{av}/^{226}Ra(0)$ plot on or close to the ${}^{226}Ra_{ev}/{}^{226}Ra(0)$ decay curve if the ${}^{230}Th/{}^{234}U$ ages are inserted for the time elapsed since formation. While $^{226}Ra_{ev}/^{226}Ra(0)$ dating of travertine is possible up to about 6000 years b.p., this chronometer is limited to about 3000-4000 years for corals because of the very low initial ²²⁶Ra(0)/²³⁴U(0) activity ratio of about 0.05. The ²²⁶Ra data of older samples were, however, useful to demonstrate closed system behaviour between ²³⁰Th and ²³⁴U. Closed system status in the ²³⁸U-series was furthermore suggested for the limestone samples by measured secular equilibria between the progeny of ²²⁶Ra, i.e. ²¹⁰Pb which is considerably more short lived (i.e. 22 years vs. 1600 years). For corals, however, this tool is not always applicable, because recent ²¹⁰Pb may sorb on the surface of the highly porous corals, if these are permanently exposed to percolating sea water. In conclusion, it is suggested that ${}^{226}Ra_{ev}/{}^{226}Ra(0)$ applied on young Holocene corals may be suitable to explain discrepancies between ²³⁰Th/²³⁴U and ¹⁴C which is of importance in the discussion on the terrestrial climate evolution.