Identifying the Mechanism and Character of Magmatic CO₂ Emplacement into Sedimentary Structures II: Resolving Magmatic He, Ne and Ar in Harding County (New Mexico) CO₂ Well Gases

Chris J Ballentine (ballentine@erdw,ethz.ch)¹ & **Martin Cassidy** (jo1955mar@aol.com)²

¹ IGMR, Dept. Erdwissenschaften, ETH Zentrum NO C61.7, CH-8092 Zurich, Switzerland ² University of Houston, Dept. Geosciences, 4800 Calhoun Rd., Houston, TX 77204-5503, USA

Identifying and tracing magmatic CO_2 emplacement in crustal systems remains a fundamental problem in hydrocarbon and mineral exploration. However, ³He is an unambiguous tracer of magmatic fluid input into shallow crustal fluids (Oxburgh et al., 1986). The relationship between CO_2 and ³He in mid-ocean ridge settings is well defined, with a $CO_2/^3$ He range of ~1-7x10⁹. This is small compared with continental fluid systems, which range between 10^5 - 10^{13} . Crustal fluids with $CO_2/^3$ He in the magmatic range clearly contain a magmatic CO_2 component, although varying values of $CO_2/^3$ He can still be ascribed to a significant crustal CO_2 admixture or reactive loss (Sherwood, Lollar et al., 1997).

Magmatic ³He/²²Ne resolved in basinal fluids is fractionated from mid-ocean ridge source values and is accounted for by melt/gas fractionation during partial degassing of deep magmas (Ballentine, 1997). Partial magmatic degassing accounts for observed systematic spatial variation in CO_2 ^{/3}He in CO_2 rich gas fields in the Permian Basin, SW Texas, USA. In this case, the highest CO₂/³He values are produced by the first stages of outgassing. This variation therefore, preserves a record of flow direction and reservoir filling history (Ballentine et al., 2000). Quantifying the magmatic CO₂ contribution or identifying the magmatic fluid flow direction where the CO₂ record has been perturbed by crustal addition or reaction is only possible by extension of this technique to other inert magmatic tracers. Mantle Ne and Ar can be resolved using their respective isotope systematics. Nevertheless, we need to be able to demonstrate that the magmatic Ar/3He and Ne/3He fractionation behaves coherently with CO₂/³He, and that a melt/gas solubility model can reasonably describe the fractionation.

We present here results from a study of a classic CO_2 well gas system to address this. The Bueyeros field (Phinney et al., 1978, Caffee et al., 1999) is a small section of the Bravo Dome gas field, which covers an area of some ~2400km² and contains an estimated 2.3×10^{11} m³ (STP) of 99%+ pure CO₂. The field is located in Harding and Union Counties, New Mexico, 35 km to the South of the Cenozoic volcanism (Raton-Clayton field) related to the Sierra Grande uplift. The field is a structural-stratigraphic trap of a faulted southeast plunging nose producing from feldspathic Permian sandstone sealed above by anhydrite and pinching out Northeast on Precambrian basement at 600-1000 m depth.

We have determined the He, Ne and Ar isotopic composition and abundance of samples collected from 14 producing wells across the field. ${}^{3}\text{He}/{}^{4}\text{He}$, ${}^{20}\text{Ne}/22\text{Ne}$ and ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ vary coherently between 0.76-3.78 Ra, 9.93-11.88 and 4,653-22,491 respectively. ²¹Ne/²²Ne vary between 0.0515-0.0583. ⁴He, ²⁰Ne and ⁴⁰Ar vary between 0.4-4.4x10⁻⁴, 1.2-7x10⁻⁹ and 2.4-6.5x10⁻⁵ cc(STP)/cc respectively and are all anti-correlated with ³He/⁴He. ³He/⁴He are a two component mixture of mantle and crustal-derived He. Ne and Ar isotopes are a result of varying proportions of crustal, mantle and water (dissolved air)derived noble gases. Three components and three isotopes enables the air-Ne contribution to be calculated and removed to give 21Ne* (Ballentine, 1997). Similarly, all ⁴⁰Ar contributing to ⁴⁰Ar/36Ar ratios greater than the air value of 295.5 are due to a two component mixture of mantle and crustal ⁴⁰Ar, or ⁴⁰Ar*. Plots of ²¹Ne*/⁴He and ⁴⁰Ar*/⁴He vs. ³He/⁴He therefore represent two component mixtures of mantle and crustal endmembers. Extrapolation to the crustal value of ³He/⁴He=0.02Ra defines the crustal ${}^{4}\text{He}/{}^{40}\text{Ar}$ and ${}^{4}\text{He}/{}^{21}\text{Ne}$ to be 16.01 and 3.53x107 with correlation coefficients of 0.993 and 0.966 respectively (Figure). Individual samples are corrected for the crustal contribution, assuming that mantle ³He/⁴He=8Ra, to determine the mantle ²¹Ne and ⁴⁰Ar. Mantle ³He/⁴He values of between 4.5Ra and 8Ra (MOR Source) have been used to test model sensitivity.

Figure 1: Resolving magmatic ⁴⁰Ar: Plot of ³He/⁴He(R/Ra), against ⁴⁰Ar*/⁴He. Both axes represent two component mixtures of crustal and magmatic end-members. Interception of the mixing line with the crustal ³He/⁴He gives the crustal ⁴⁰Ar/⁴He end-member. Assuming a mantle ³He/⁴He value (8Ra), enables the crustal ⁴He and therefore crustal ⁴⁰Ar to be determined. The residual is magmatic ⁴⁰Ar.

Ballentine CJ, Schoell M, Coleman D & Cain BA, *This Volume* Ballentine CJ, *Earth and Planet. Sci. Lett*, **81**, 127-150, (1997). Caffee MW, Hudson GB, Velsko C, Huss GR, Alexander Jr EC

& Chivas AR, Science, 285, 2115-2118, (1999).

Oxburgh ER, O'Nions RK & Hill RI, *Nature*, **324**, 632-635, (1986).

Phinney D, Tennyson J & Frick UJ, J. Geophys. Res, 83, 2313-2319, (1978).

Sherwood Lollar B, Ballentine CJ & O'Nions RK, *Geochim. Cosmochim. Acta*, **61**, 2295-2307, (1997).