Particle Removal with ²³⁴Th in the Shelf Edge of the East China Sea

Tatsuo Aono (t_aono@nirs.go.jp)¹, Masatoshi Yamada¹ & Kou Harada²

¹ Research Centre for Radioecology, National Institute of Radiological Sciences, 3609 Isozaki, Hitachinaka, Ibaraki, 311-1202, Japan

² National Institute for Resources and Environment, 16-3, Onogawa, Tsukuba, Ibaraki, Japan

²³⁴Th ($t_{1/2}$ = 24.1 day) is especially useful for studies on material transport scavenging processes within relatively short time and on the mechanism of material transport from coastal zones to the open sea, because it is highly reactive to particulate matter and its rapid removal from the water column. In this paper, we present the activities of total ²³⁴Th in seawater and the calculated removal rates of this nuclide from the water column in the shelf edge of the East China Sea. Seawater samples were collected using the 23 L - Niskin sampler with a CTD and a rosette multibottle array system at various depths from the surface to the bottom. All the chemical procedures and measurements of thorium isotope were carried out on shipboard using 51 of unfiltered seawater samples. Thorium was quantified according to Harada's (1995) procedure using an on board alpha liquid scintillation counter system. As seawater samples were not filtered, ²³⁴Th concentration was the mean total concentration of ²³⁴Th in seawater. The concentration range of ²³⁴Th was from 1.1 to 2.0 dpm/l in the shallow layer, and ²³⁴Th concentration relative to ²³⁸U was almost at equilibrium in the middle layer. But, ²³⁴Th decreased and a deficiency in ²³⁴Th concentration relative to

²³⁸U was obtained in the bottom layer. Based on the disequilibrium between total ²³⁴Th and ²³⁸U in the seawater, the removal fluxes and times of total ²³⁴Th were calculated. The mean removal times of total ²³⁴Th ranged from 47 to 325 days in the shallow layer and 34 to 92 days in the bottom layer. And, the removal fluxes of total ²³⁴Th ranged from 140 to 4820 dpm/m²/day in the shallow layer and 430 to 783 dpm/m²/day in the bottom layer. As the deficiency of total ²³⁴Th relative to ²³⁸U were observed in the shallow and bottom layers, the removal factors of total ²³⁴Th using some particle inventories in the water column were considered. The removal fluxes of total ²³⁴Th are related to suspended particulate matter (SPM), POC and biogenic silica in the shallow layer. But, no correlation of the removal fluxes of total ²³⁴Th with inventories of SPM and lithogenic silica excluding POC and biogenic silica inventories is recognized in the bottom layer. Thus, total ²³⁴Th in seawater is not removal by large amounts of SPM, but it is controlled by particles relevant to biological activities in the East China Sea.

Harada K, Shigen to Knakyo, 4, 36-41, (1995).